Constraint-Aware Design for Closed-Loop ILC Systems with Actuator Constraints

Zhihe Zhuang

Jiangnan University

Email: z.h.zhuang@outlook.com

Personal page: https://zhihe-zhuang.github.io/

May 10, 2025

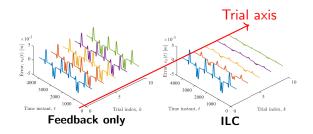
- Introduction
- Constraint-aware ILC
- Conclusion and Future work

- Introduction
- Constraint-aware ILC
- 3 Conclusion and Future work

Iterative learning control (ILC)

- Application examples
 - Gantry crane
 - Medical rehabilitation
 - Injection molding
 - Robotic arm
- Goal
 - Perfect tracking by ILC
- Insights
 - Repetitive
 - Learning
- Reduce repetitive disturbances!

May 10, 2025

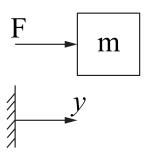


- Introduction
- 2 Constraint-aware ILC
- 3 Conclusion and Future work

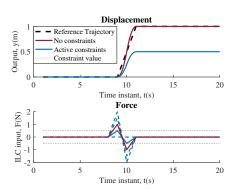
Why constraint-aware ILC?

• Why constraint-aware ILC?

- Mass example
- Issues
 - Integral windup in iteration domain
 - Lower learning efficiency



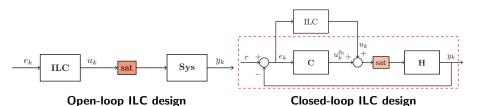
Mass example



Input and output

Why constraint-aware ILC?

- Why constraint-aware ILC?
 - Mass example
 - Issues
 - Integral windup in iteration domain
 - Lower learning efficiency
 - Solution: Enable ILC with constraint awareness
- Input constraints: open-loop ILC^{1,2,...} vs. closed-loop ILC^{3,4,...}



¹Ronghu Chi et al. "Constrained data-driven optimal iterative learning control". In: J. Process Control (2017).

Zhihe Zhuang Jiangnan University May 10, 2025 6 / 16

²Matthew C Turner et al. "Anti-windup compensation for a class of iterative learning · · · ". In: 2023 ACC. IEEE. 2023.

³Sandipan Mishra et al. "Optimization-based constrained iterative · · · ". In: IEEE Trans. Control Syst. Technol. (2010).

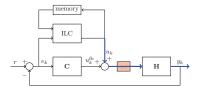
⁴Gijo Sebastian et al. "Convergence analysis of feedback-based iterative learning control · · · ". In: Automatica. (2019).

Problem formulation

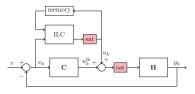
• **Process sensitivity** $u_k \rightarrow y_k$ (without constraints):

$$y_k = Gu_k, (1)$$

- Saturation constraint $\Omega = \{u | -\bar{u} \le u(t) \le \bar{u}, \ t \in [0, N-1]\}$
- Issues when enabled with constraint awareness:
 - How the constraint on ILC $\Omega^{\rm ff}$ affect the learning efficiency?
 - How to choose Ω^{ff} ?



Closed-loop ILC with actuator constraints



Constraint-aware ILC

Problem formulation

• **Process sensitivity** $u_k \rightarrow y_k$ (without constraints):

$$y_k = Gu_k, (1)$$

- Saturation constraint $\Omega = \{u | -\bar{u} \le u(t) \le \bar{u}, \ t \in [0, N-1]\}$
- Issues when enabled with constraint awareness:
 - How the constraint on ILC $\Omega^{\rm ff}$ affect the learning efficiency?
 - How to choose Ω^{ff} ?

Definition 1

The ILC design problem is to find an ILC input sequence $\{u_{k+1}\}_{k\geq 0}$ under Ω^{ff} to solve the constrained optimization problem

$$\min_{u_{k+1} \in \Omega^{ff}} J_{k+1} (u_{k+1})
s.t. e_{k+1} = r - Gu_{k+1},$$
(2)

7/16

such that e_{k+1} converges as k increases.

Constraint-aware ILC via alternating projections

- Alternating projection problem ← ILC design problem
- Example
 - \bullet $H=R^2$
 - z = (x, y) powered by Cartesian product
 - Two convex closed sets.

•
$$M_1 = \{(x, y) \in R^2 : y = x\}$$

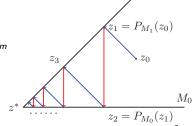
• $M_0 = \{(x, y) \in R^2 : y = 0\}$

•
$$M_0 = \{(x, y) \in R^2 : y = 0\}$$

•
$$z_{k+1} = P_{M_0/M_1}(z_k) \triangleq \arg\min_{z \in M_0/M_1} \|z - z_k\|_{R^2}^2$$

• $\{z_k\}_{k>0}$ converges to $z^* = M_1 \cap M_0$

- Extensions
 - **High dimensions:** $x \in R^n$ and $y \in R^m$



Alternating projections in R^2

Constraint-aware ILC via alternating projections

- Alternating projection problem ← ILC design problem
 - Find two points minimizing the distance between

$$M_1 = \{(e, u) \in H : e = r - y, y = Gu\},$$
 (3)

$$M_0 = \{(e, u) \in H : e = 0, u \in \Omega^{ff}\},$$
 (4)

9/16

- Which set we put $u \in \Omega^{\mathrm{ff}}$?
 - M_1 : complex constrained optimization problem $\min_{u \in \Omega^{\mathrm{ff}}} \ J_{k+1}$
 - M_0 : unconstrained optimization problem $\min_{\hat{u}} \ J_{k+1}$, and $u = P_{\Omega^{\mathrm{ff}}} \ (u)$

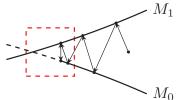


Illustration of alternating projections with input constraints

⁵Bing Chu et al. "Iterative learning control for constrained linear systems". In: International Journal of Control (2010).

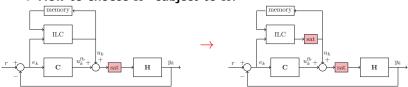
Constraint-aware ILC via alternating projections

- Alternating projection problem ← ILC design problem
 - Find two points minimizing the distance between

$$M_1 = \{(e, u) \in H : e = r - y, y = Gu\},$$
 (3)

$$M_0 = \{(e, u) \in H : e = 0, u \in \Omega^{ff}\},$$
 (4)

- Which set we put $u \in \Omega^{\mathrm{ff}}$?
- Chanlleges
 - How to analyze the learning efficiency?
 - How to choose Ω^{ff} subject to Ω ?



Traditional ILC under constraints

Constraint-aware ILC

Constraint-aware ILC design

- Constraint-aware ILC design
 - ullet Projection implementation o Minimizing the cost function

$$\min \|z_{\bar{k}+1} - z_{\bar{k}}\|_{H_C}^2 = \min_{u_{k+1} \in \Omega_{ff}} J_{k+1}(u_{k+1}).$$
 (5)

• Define the Hilbert space H_C :

$$(e, u) \in H_C = \ell_2^m [1, N] \times \ell_2^l [0, N-1],$$
 (6)

$$\langle (e, u), (e, v) \rangle_{\{Q,R\}} = e^T Q z + u^T R v, \tag{7}$$

$$\|(e,u)\|_{\{Q,R\}} = \sqrt{\langle (e,u), (e,u)\rangle_{\{Q,R\}}}, \ Q \succ 0, \ R \succeq 0.$$
 (8)

Constraint-aware ILC update law

$$u_{k+1} = P_{\Omega^{ff}} \left(f \left(P_{\Omega^{ff}} \left(u_k \right), e_k \right) \right), \tag{9}$$

where $P_{\Omega^{\mathrm{ff}}}\left(\cdot\right)$ is the projection operator and $f\left(\cdot\right)$ is the solution of (5).

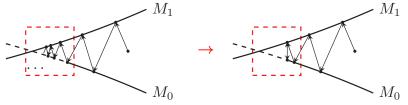
Constraint-aware ILC design

Learning efficiency analysis

Theorem 3.1

Given active Ω^{ff} , applying the constraint-aware ILC (9) yields the tracking error e_k converging with at most $\mathcal{K}+1$ trials, where for any initial point $z_0=(e_0,u_0)$ in H_C and some $\alpha\in(0,1)$,

$$\mathcal{K} = \left\lfloor \log_{1-\alpha^2} \left(\frac{\operatorname{dis}(M_1, M_0)}{\operatorname{dis}(z_0, M_0)} \right) \right\rfloor. \tag{10}$$



Traditional ILC under constraints

Constraint-aware ILC

11 / 16

Zhihe Zhuang Jiangnan University May 10, 2025

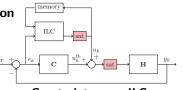
Constraint-aware ILC design

Choice of the constraint-aware value

$$\min_{\substack{u_{k+1}, \bar{u}_{k+1}^c \\ \text{s.t. } e_{k+1} = \mathcal{S}r - GP_{\Omega_{k+1}}(u_{k+1}),}} J_{k+1}(u_{k+1}, \bar{u}_{k+1}^c) \tag{11}$$

where
$$\Omega_{k+1}^{\mathrm{ff}} = \left\{ u | - \bar{u}_{k+1}^{\mathrm{c}} \leq u(t) \leq \bar{u}_{k+1}^{\mathrm{c}}, \ \forall t \right\}$$
 and $\mathcal{S}: r \to e_k$.

- Two-step iterative optimization method
 - Given initial u_0 and $\bar{u}_0^{\rm c}$
 - Update u_{k+1} by the unconstrained ILC law $f(\cdot)$
 - Project u_{k+1} onto the known Ω_k^{ff}
 - Solve the single-variable optimization problem from (11) to get \bar{u}_{k+1}^c
 - Project u_{k+1} onto $\Omega_{k+1}^{\mathrm{ff}}$

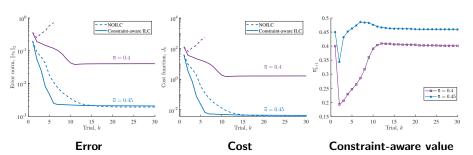


Constraint-aware ILC

Transfer function of the plant model

$$H(s) = \frac{0.12s + 235}{0.00009s^4 + 0.01092s^3 + 21.385s^2}$$
(12)

- Stabilizing feedback controller C
- Unconstrained ILC law: NOILC



- Introduction
- Constraint-aware ILC
- Conclusion and Future work

Conclusion and Future Work

- Advantages
 - Restrictions on the learning of ILC against instability
 - Constraint-aware design for improved learning efficiency
- Insights
 - Closed-loop ILC
 - Handling ILC input constraints in practice
 - Linear design for non-linear dynamics (constraint non-linearity)
- Application scenarios
 - Piezo-stepper actuator for nano-manufacturing
 - Upper limb rehabilitation
 -

Acknowledgments

Hongfeng Tao

Max van Meer

Tom Oomen

Yiyang Chen

Eric Rogers

Wojciech Paszke

