Alternating Projection-Based Iterative Learning Control for Repetitive Systems with Varying Trial Lengths and Practical Input Constraints

Hongfeng Tao

Jiangnan University taohongfeng@jiangnan.edu.cn

August 7, 2024

- Iterative learning control
- Varying trial length problem
- 3 Alternating projection-based ILC
- 4 Conclusion and Future work
- 6 Acknowledgments

- Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
- 4 Conclusion and Future work
- 5 Acknowledgments

Iterative learning control (ILC)

- Application examples
 - Gantry crane
 - Medical rehabilitation
 - Injection molding
 - Robotic arm
- Goal
 - Perfect tracking by ILC
- Insights
 - Repetitive
 - Learning
- Reduce repetitive disturbances!

- 1 Iterative learning control
- Varying trial length problem
- 3 Alternating projection-based ILC
- 4 Conclusion and Future work
- 5 Acknowledgments

Repetitive systems with varying trial lengths

- Foot motion assist device¹
- Left ventricular assist device²
- Marine hydrokinetic energy system³
- Mechanical ventilator⁴

¹Thomas Seel et al. "Monotonic convergence of iterative learning control systems · · · ". In: Int. J. Control. (2017).

²Maike Ketelhut et al. "Iterative learning control of ventricular assist devices · · · ". In: Control Eng. Pract. (2019).

³Mitchell Cobb et al. "Flexible-time receding horizon iterative learning · · · ". In: IEEE Trans. Control Syst. Technol. (2022).

⁴Joev Reinders et al. "Triggered repetitive control: Application to · · · ". In: IEEE Trans. Control Syst. Technol. (2023).

- Missing information for learning
 - Extra design for learning efficiency

Illustration of varying trial length problem

Missing information for learning

- Extra design for learning efficiency
 - Model assumption (Stochastic^{5,6,...}, deterministic^{7,8,...})

Hongfeng Tao Jiangnan University August 7, 2024

⁵Xuefang Li et al. "An iterative learning control approach for linear systems · · · ". In: IEEE Trans. Autom. Control. (2014)

⁶Dong Shen et al. "On almost sure and mean square convergence of P-type ILC · · · ". In: *Automatica*. (2016)

⁷Thomas Seel et al. "Monotonic convergence of iterative learning control systems · · · ". In: *Int. J. Control.* (2017)

⁸Devuan Meng et al. "Deterministic convergence for learning · · · ". In: *IEEE Trans. Neural Netw. Learn. Syst.* (2018)

Missing information for learning

- Extra design for learning efficiency
 - Model assumption (Stochastic, deterministic)
 - Information compensation (zero⁵, prediction^{6,7}, no compensation^{8,9},

Illustration of compensations

Hongfeng Tao Jiangnan University August 7, 2024

 $^{^5}$ Dong Shen et al. "On almost sure and mean square convergence of P-type ILC \cdots ". In: *Automatica*. (2016)

⁶Na Lin et al. "Auxiliary predictive compensation-based ILC · · · ". In: IEEE Trans. Syst., Man, Cybern., Syst. (2019).

⁷Lele Ma et al. "Event-based switching iterative learning model predictive control · · · ". In: IEEE Trans. Cybern. (2023).

⁸Xu Jin. "Iterative learning control for MIMO nonlinear systems with · · · ". In: IEEE Trans. Cybern. (2021).

⁹Chen Liu et al. "Optimal learning control scheme for discrete-time · · · ". In: IEEE Transactions on Cybernetics (2022).

Missing information for learning

- Extra design for learning efficiency
 - Model assumption (Stochastic, deterministic)
 - Information compensation (zero, prediction, no compensation, ...)
 - Design mechanisms (iteration-averaging⁵, most recent one-order⁶, event-based switching⁷, optimal design^{8,9,...}, ...)

Iteration-averaging

Most recent one-order

7/39

⁹Chen Liu et al. "Optimal learning control scheme for discrete-time · · · · . In: IEEE Transactions on Cybernetics (2022).

Hongfeng Tao Jiangnan University August 7, 2024

 ⁵Xuefang Li et al. "An iterative learning control approach for linear systems ···". In: IEEE Trans. Autom. Control. (2014).
 ⁶Xu Jin. "Iterative learning control for MIMO nonlinear systems with ···". In: IEEE Trans. Cybern. (2021).

⁷Lele Ma et al. "Event-based switching iterative learning model predictive control · · · ". In: *IEEE Trans. Cybern.* (2023).
⁸Maike Ketelhut et al. "Iterative learning control of ventricular assist devices · · · ". In: *Control Eng. Pract.* (2019).

Missing information for learning

- Extra design for learning efficiency
 - Model assumption (Stochastic, deterministic)
 - Information compensation (zero, prediction, no compensation, ...)
 - Design mechanisms (iteration-averaging⁵, most recent one-order⁶, event-based switching⁷, optimal design^{8,9,...}, ...)

Event-based switching

⁵Xuefang Li et al. "An iterative learning control approach for linear systems · · · ". In: *IEEE Trans. Autom. Control.* (2014). ⁶Xu Jin. "Iterative learning control for MIMO nonlinear systems with · · · ". In: *IEEE Trans. Cybern.* (2021).

⁷Lele Ma et al. "Event-based switching iterative learning model predictive control · · · ". In: IEEE Trans. Cybern. (2023).

⁸Maike Ketelhut et al. "Iterative learning control of ventricular assist devices · · · ". In: Control Eng. Pract. (2019).

⁹Chen Liu et al. "Optimal learning control scheme for discrete-time · · · ". In: IEEE Transactions on Cybernetics (2022).

- Missing information for learning → Optimization-based ILC
 - Extra design for learning efficiency
 - Model assumption (Stochastic, deterministic)
 - Information compensation (zero, prediction, no compensation, ...)
 - Design mechanisms (iteration-averaging, most recent one-order, event-based switching, optimal design, · · ·)
 - Modified convergence analysis
 - Contraction mapping (linear or globally Lipschitz continuous non-linear systems)
 - Lyapunov-based composite energy function (locally Lipschitz continuous non-linear systems)
 - Variational analysis (fractional order systems)
- Practical input constraints \rightarrow Constraint-aware ILC

Why alternating projection-based design?

- Alternating projection-based design
 - Intuitively and customizably geometric interpretation of problem
 - Hilbert space-enabled optimization methods
 - Practical constraint handling

- 1 Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
- 4 Conclusion and Future work
- 5 Acknowledgments

- Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
 - #0 Alternating projections in Hilbert space
 - #1 Alternating projection-based ILC using multiple sets
 - #2 Stochastic-optimization ILC via alternating projections
 - #3 Constraint-aware ILC via alternating projections
- 4 Conclusion and Future work
- 5 Acknowledgments

#0 Alternating projections in Hilbert space

Example

- $H = R^2$
- z = (x, y) powered by Cartesian product
- Two convex sets

•
$$M_1 = \{(x, y) \in R^2 : y = x\}$$

•
$$M_0 = \{(x, y) \in R^2 : y = 0\}$$

•
$$z_{k+1} = P_{M_0, M_1}(z_k) \triangleq \arg\min_{z \in M_0, M_1} ||z - z_k||_H^2$$

• $\{z_k\}_{k>0}$ converges to $z^* = M_1 \cap M_0$

• High dimensions: $x \in R^n$ and $y \in R^m$

Extensions

Alternating projections in R^2

- More sets: $M_0, M_1, M_2, \cdots, M_I$
- vs. ILC
 - Proximity algorithm: iterate to find a solution (Learning)
 - Full model inverse for one step convergence: $z^* = P_{M_1 \cap M_2}(z_0)$
 - Projection: optimal ILC design

- 1 Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
 - #0 Alternating projections in Hilbert space
 - #1 Alternating projection-based ILC using multiple sets
 - #2 Stochastic-optimization ILC via alternating projections
 - #3 Constraint-aware ILC via alternating projections
- 4 Conclusion and Future work
- 5 Acknowledgments

#1 Problem formulation

- **Motivation:** Optimal ILC design for learning efficiency
- Lifted system with varying trial lengths

$$\begin{cases}
 y_{k} = Gu_{k}, u_{k} \in \ell_{2}^{l}[0, N-1], y_{k} \in \ell_{2}^{m}[1, N], \\
 e_{k} = F_{k} (r - y_{k}), \\
 F_{k} = \begin{bmatrix}
 I_{N_{k}} \otimes I_{m} & 0 \\
 0 & 0_{N_{d}-N_{k}} \otimes 0_{m}
\end{bmatrix}.
\end{cases} (1)$$

$$e_k = \left[\underbrace{e_k^{\mathrm{T}}(1), \cdots, e_k^{\mathrm{T}}(N_k), 0, \cdots, 0}^{N_d}\right]^{\mathrm{T}} \stackrel{k-4}{\underset{k-3}{\overset{k-3}{\underset{k-1}{\overset{k-1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}{\overset{k+1}{\overset{k+1}{\underset{k+1}{\overset{k+1}}{\overset{k+1}{$$

 \rightarrow Time axis. tTrial axis, kDesired length

Zero compensation

Deterministic model assumption

13/39

Hongfeng Tao Jiangnan University August 7, 2024

#1 Problem formulation

- Motivation: Optimal ILC design for learning efficiency
- Lifted system with varying trial lengths

$$\begin{cases}
y_{k} = Gu_{k}, u_{k} \in \ell_{2}^{I}[0, N-1], y_{k} \in \ell_{2}^{m}[1, N], \\
e_{k} = F_{k} (r - y_{k}), \\
F_{k} = \begin{bmatrix} I_{N_{k}} \otimes I_{m} & 0 \\ 0 & 0_{N_{d} - N_{k}} \otimes 0_{m} \end{bmatrix}.
\end{cases} (1)$$

Definition 1.1

The ILC design problem is to find an ILC update law

$$u_{k+1} = f(e_k, e_{k-1}, \cdots, u_k, u_{k-1}, \cdots),$$
 (2)

for zero convergence of the modified tracking error in (1), i.e.,

$$\lim_{k\to\infty}\|e_k\|=0. \tag{3}$$

#1 Alternating projection-based ILC using multiple sets

- Alternating projection problem ← ILC design problem
 - design a projection order to find a point in the intersection of:

$$M_j = \{(e, u) \in H : e = F_j(r - y), y = Gu\} \in \{M_1, \dots, M_J\},\ M_0 = \{(e, u) \in H : e = 0\}.$$
 (4)

- M_j system dynamics
- M₀ tracking objective
- Projection operator: $P_j(z) \triangleq \arg\min_{\hat{z} \in M_j} \|\hat{z} z\|_H^2$

minimize the "distance" between a point and a set in H• Example: $z_2 = P_0(z_1) \triangleq \arg\min_{\hat{z} \in M} \|\hat{z} - z_1\|_H^2$

• **Projection on** M_0 : no change on u

• Projecting on $M_j \rightarrow$ One ILC iteration

• Constraint handling: See #3

Alternating projections between multiple sets

#1 Alternating projection-based ILC using multiple sets

- Alternating projection problem ← ILC design problem
 - design a projection order to find a point in the intersection of:

$$M_j = \{(e, u) \in H : e = F_j(r - y), y = Gu\} \in \{M_1, \dots, M_J\},\ M_0 = \{(e, u) \in H : e = 0\}.$$
 (4)

- M_j system dynamics
- M₀ tracking objective
- **Projection operator:** $P_j(z) \triangleq \arg\min_{\hat{z} \in M_j} \|\hat{z} z\|_H^2$ minimize the "distance" between a point and a set in H
- Example: $z_2 = P_0(z_1) \triangleq \arg\min_{\hat{z} \in M} \|\hat{z} z_1\|_H^2$
- **Projection on** M_0 : no change on u
- Challenges
 - How to design a projection order?
 - How to implement the projection?
- Notations
 - Index sequence: $\{j_{\bar{k}}\}_{\bar{k}>0}$ where $j_{\bar{k}} \in \{0,1,2,\cdots,J\}$.
 - Projection sequence: $\{z_{\bar{k}}\}_{\bar{k}\geq 0}$ by $z_{\bar{k}+1}=P_{j_{\bar{k}+1}}(z_{\bar{k}})$.

- Projection order design
 - Necessary assumptions
 - Closed convex sets
 - Infinitely many times

Definition 1.2

The sequence $s = \{j_{\bar{k}}\}_{\bar{k} \geq 0}$ taking i infinitely many times yields

$$\delta(s,i) = \sup_{n} \left[\Delta_{n+1}(i) - \Delta_{n}(i) \right] < \infty, \tag{5}$$

where $\{\Delta_n(i) \in \mathbb{N}\}_{n \geq 0}$ is an increasing sequence such that, at the n-times, $j_{\Delta_n(i)} = i$ with $\Delta_0(i) = 0$.

ķ	1	2	3	4	5	6	7	8	• • •	$\delta\left(s,1 ight)$	$\delta(s,2)$	$\delta(s,3)$
j _k	3	1	1	2	3	1	3	2		3	4	4

Table. Example with J = 3 until k = 8.

Assumption 1.1

Let F_1 has full row rank and $M_J \subseteq \cdots \subseteq M_2 \subseteq M_1$. M_1 appears infinitely many times during the alternating projections between M_j and M_0 , i.e.

$$\delta(s,1) = \sup_{n} \left[\Delta_{n+1}(1) - \Delta_{n}(1) \right] < \infty.$$
 (6)

- Assumption 1.1 ← Deterministic model assumption
- Full learning property

- Projection order design
 - **Necessary assumption**: Assumption 1.1 (full learning property)
 - Projection order

$$M_{j_{\bar{k}}} = \left\{ \begin{array}{l} M_j \in \{M_1, M_2, \dots, M_J\}, & \bar{k} \text{ is odd,} \\ M_0, & \bar{k} \text{ is even.} \end{array} \right.$$
 (7)

Projection sequence

$$\{z_{\bar{k}}\}_{\bar{k}\geq 0}: \begin{cases} z_{2\bar{k}+1} = P_{j_{2\bar{k}+1}}(z_{2\bar{k}}), \\ z_{2\bar{k}} = P_{j_{2\bar{k}}}(z_{2\bar{k}+1}). \end{cases}$$
(8)

Projection order design

- Projection order design
 - **Necessary assumption**: Assumption 1.1 (full learning property)
 - Projection order

$$M_{j_{\bar{k}}} = \left\{ \begin{array}{l} M_j \in \{M_1, M_2, \dots, M_J\}, & \bar{k} \text{ is odd,} \\ M_0, & \bar{k} \text{ is even.} \end{array} \right.$$
 (7)

Projection sequence

$$\{z_{\bar{k}}\}_{\bar{k}\geq 0}: \begin{cases} z_{2\bar{k}+1} = P_{j_{2\bar{k}+1}}(z_{2\bar{k}}), \\ z_{2\bar{k}} = P_{j_{2\bar{k}}}(z_{2\bar{k}+1}). \end{cases}$$
(8)

• Convergence analysis: Alternating projections under (7).

Theorem 1.1

The sequence $\{z_{\bar{k}}\}_{\bar{k}\geq 0}$ converges in norm to the orthogonal projection of z_0 onto $M_j\cap M_0$ under the projection order (7).

^aZhihe Zhuang et al. "Alternating projection-based iterative learning control for discrete-time systems with non-uniform trial lengths". In: *International Journal of Robust and Nonlinear Control* (2023).

#1 Optimal ILC algorithms

- Optimal ILC algorithm ← Projection implementation
 - ullet Projection implementation o Minimizing the cost function

$$\min \left\| P_{j_{\bar{k}+1}}(z_{\bar{k}}) - z_{\bar{k}} \right\|_{H}^{2} \to \min \ J_{k+1}. \tag{9}$$

Define H by inner product and associated induced norm:

$$(e, u) \in H = \ell_2^m [1, N] \times \ell_2^l [0, N-1],$$
 (10)

$$\langle (e, u), (y, v) \rangle_{\{Q,R\}} = \sum_{i=1}^{N_d} e^T(i) Qy(i) + \sum_{i=0}^{N_d-1} u^T(i) Rv(i),$$
 (11)

$$\|(e,u)\|_{\{Q,R\}} = \sqrt{\langle (e,u), (e,u)\rangle_{\{Q,R\}}}, \ Q \succ 0, \ R \succeq 0.$$
 (12)

• Optimal ILC update law $\leftarrow J_{k+1} = \|e_{k+1}\|_Q^2 + \|u_{k+1} - u_k\|_R^2$

$$u_{k+1} = u_k + Le_k, \tag{13}$$

where
$$L = (G^{\mathrm{T}}QG + R)^{-1}G^{\mathrm{T}}Q$$
.

Transfer function

$$G(s) = \frac{15.8869(s + 850.3)}{s(s^2 + 707.6s + 3.377 \times 10^5)},$$
 (14)

- Sampling time 0.01s, operation time 2s, desired length $N_d = 200$.
- Set $N_k \sim U(165, 200)$ where $\delta(s, 1) = 20$, $N_3 = 200$, and $N_{23} = 200$.

#1 Summary

- Advantages
 - Optimal design without learning gain tuning
 - ullet Weighting parameters Q and R vs. Arimoto-type learning gain
 - Straightforward but effective mechanisms
 - Zero compensation
 - Most recent one-order learning by lifted framework
 - Convergence guarantee under alternating projections
- Insights
 - Special case: NOILC for linear systems with varying trial lengths
 - Allow more design freedom: More numerial optimization methods
 - Extensions to other non-repetitive ILC problems
 - Trial-varying tracking references
 - Nonidentical initial state
 - Trial-varying system plant
 -

- Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
 - #0 Alternating projections in Hilbert space
 - #1 Alternating projection-based ILC using multiple sets
 - #2 Stochastic-optimization ILC via alternating projections
 - #3 Constraint-aware ILC via alternating projections
- 4 Conclusion and Future work
- 5 Acknowledgments

#2 Problem formulation

- Motivation: Optimal ILC design using probability information
- Lifted system with varying trial lengths

$$\begin{cases}
y_{k} = Gu_{k}, u_{k} \in \ell_{2}^{I}[0, N-1], y_{k} \in \ell_{2}^{m}[1, N], \\
e_{k} = F_{k}(r-y_{k}), \\
F_{k} = \begin{bmatrix} I_{N_{k}} \otimes I_{m} & 0 \\ 0 & 0_{N_{d}-N_{k}} \otimes 0_{m} \end{bmatrix}.
\end{cases} (15)$$

22 / 39

• Random variable $N_k \sim \mathcal{D}(N_-, N_d)$

Stochastic model

- Motivation: Optimal ILC design using probability information
- Lifted system with varying trial lengths

$$\begin{cases}
y_{k} = Gu_{k}, u_{k} \in \ell_{2}^{I}[0, N-1], y_{k} \in \ell_{2}^{m}[1, N], \\
e_{k} = F_{k} (r - y_{k}), \\
F_{k} = \begin{bmatrix} I_{N_{k}} \otimes I_{m} & 0 \\ 0 & 0_{N_{d} - N_{k}} \otimes 0_{m} \end{bmatrix}.
\end{cases} (15)$$

- Random variable $N_k \sim \mathcal{D}(N_-, N_d)$
 - $P(N_k = N_i) = p_i$ where $\sum_{i=1}^{N_d N_- + 1} p_i = 1$.
 - Stochastic information used: Mathematical expectation of F_k

$$\bar{F} \triangleq E\{F_k\}
= \operatorname{diag} \left\{ \overbrace{1, \cdots, 1}^{N_- - 1}, p(N_k = N_-), \cdots, p(N_k = N_d) \right\} \otimes I_m.$$
(16)

#2 Stochastic-optimization ILC via alternating projections

Definition 2.1

The ILC design problem is to find an ILC update law

$$u_{k+1} = f(e_k, e_{k-1}, \cdots, u_k, u_{k-1}, \cdots),$$
 (17)

such that $\lim_{k\to\infty} \|\mathbf{E}\{e_k\}\| = 0$.

Alternating projection problem ← ILC design problem

$$M_1 = \{(\underline{e}, u) \in H_E : \underline{e} = \underline{E}\{F(r - y)\}, y = Gu\}, \qquad (18)$$

$$M_0 = \{(\underline{e}, u) \in H_E : \underline{e} = 0\},$$

 M_1 (19)

$$H_E = \ell_2^m [1, N] \times \ell_2^l [0, N-1]$$

(20)

23 / 39

Alternating projections between two sets

#2 Stochastic-optimization ILC algorithm

- Stochastic-optimization ILC algorithm
 - \bullet Projection implementation \to Minimizing the cost function

$$\min \|z_{\bar{k}+1} - z_{\bar{k}}\|_{H_{\bar{k}}}^{2} = \min J_{\bar{k}+1}^{\bar{k}}$$
 (21)

Define the Hilbert space H_E:

$$\langle (\underline{e}, u), (\underline{e}, v) \rangle_{\{Q,R\}} = \underline{e}^T Q \underline{z} + u^T R v,$$
 (22)

$$\|(\underline{e},u)\|_{\{Q,R\}} = \sqrt{\langle (\underline{e},u), (\underline{e},u)\rangle_{\{Q,R\}}}, \ Q \succ 0, \ R \succeq 0. \quad (23)$$

• Stochastic-optimization ILC $\leftarrow J_{k+1}^E = \|E\{e_{k+1}\}\|_Q^2 + \|u_{k+1} - u_k\|_R^2$

Theorem 2.1

Minimizing J_{k+1}^E has a feedforward solution

$$u_{k+1} = u_k + L_E e_k, (24)$$

24 / 39

where $L_E = \left(G^{\mathrm{T}} \mathcal{K} G + R\right)^{-1} G^{\mathrm{T}} \bar{F}^{\mathrm{T}} Q$ and $\mathcal{K} = E\left\{F_k^{\mathrm{T}} Q F_k\right\}$.

^aZhihe Zhuang et al. "Iterative learning control for repetitive tasks with randomly varying trial lengths using successive projection". In: Int. J. Adapt. Control Signal Process. (2022).

Transfer function

$$G(s) = \frac{15.8869(s + 850.3)}{s(s^2 + 707.6s + 3.377 \times 10^5)},$$
 (25)

25 / 39

- Sampling time 0.01s, operation time 2s, desired length $N_d = 200$.
- Set $N_k \sim U(165,200)$ where $\delta(s,1)=20$, $N_3=200$, and $N_{23}=200$.

Hongfeng Tao Jiangnan University August 7, 2024

#2 Summary

Advantages

- Optimal design without learning gain tuning
 - Weighting parameters Q and R vs. Arimoto-type learning gain
- Straightforward but effective mechanisms
 - Zero compensation
 - Most recent one-order learning by lifted framework
- Convergence guarantee under alternating projections
- Further optimization using probility information

Insights

- More information used for optimization
- Modified weights in learning gain
- Extensions to other stochastic factors
 - Non-repetitive disturbances with known probility information
 -

- Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
 - #0 Alternating projections in Hilbert space
 - #1 Alternating projection-based ILC using multiple sets
 - #2 Stochastic-optimization ILC via alternating projections
 - #3 Constraint-aware ILC via alternating projections
- Conclusion and Future work
- 5 Acknowledgments

#3 Why constraint-aware ILC?

• Why constraint-aware ILC?

- Mass example
- Issues
 - Integral windup in iteration domain
 - Lower learning efficiency

Mass example

Input and output

#3 Why constraint-aware ILC?

- Why constraint-aware ILC?
 - Mass example
 - Issues
 - Integral windup in iteration domain
 - Lower learning efficiency
 - Solution: Enable ILC with constraint awareness
- Input constraints: Direct ILC^{5,6,...} vs. Indirect ILC (separately)^{7,8,...}

Direct ILC design

Indirect ILC design

⁵Ronghu Chi et al. "Constrained data-driven optimal iterative learning control". In: *J. Process Control* (2017).

⁶Matthew C Turner et al. "Anti-windup compensation for a class of iterative learning · · · ". In: 2023 ACC. IEEE. 2023.

⁷Sandipan Mishra et al. "Optimization-based constrained iterative · · · ". In: IEEE Trans. Control Syst. Technol. (2010).

Sandipan Mishra et al. "Optimization-based constrained iterative ...". In: IEEE Trans. Control Syst. Technol. (2010). Gijio Sebastian et al. "Convergence analysis of feedback-based iterative learning control ...". In: Automatica. (2019).

#3 Problem formulation

• **Process sensitivity** $u_k \rightarrow y_k$ (without constraints):

$$y_k = Gu_k, (26)$$

29 / 39

where the input constraint for ILC $u_k \in \Omega_{\mathrm{ff}}$ is unknown subject to:

- Actuator constraints
- Extra non-repetitive disturbances: $u_k + u_k^{\text{fb}} \in \Omega$

Closed-loop control block diagram

#3 Problem formulation

• **Process sensitivity** $u_k \rightarrow y_k$ (without constraints):

$$y_k = Gu_k, (26)$$

where the input constraint for ILC $u_k \in \Omega_{\text{ff}}$ is unknown subject to:

- Actuator constraints
- Extra non-repetitive disturbances: $u_k + u_k^{\text{fb}} \in \Omega$

Definition 3.1

The ILC design problem is to find a suitable $\Omega_{\rm ff}$ to solve the constrained optimization problem

$$\min_{u_{k+1} \in \Omega_{ff}} J_{k+1}(u_{k+1})
s.t. e_{k+1} = r - Gu_{k+1},$$
(27)

to find an ILC algorithm generating ILC input sequence $\{u_{k+1}\}_{k\geq 0}$ such that e_{k+1} converges as k increases.

#3 Constraint-aware ILC via alternating projections

- ◆ Alternating projection problem ← ILC design problem
 - Find two points minimizing the distance between

$$M_1 = \{(e, u) \in H : e = r - y, y = Gu\},$$
 (28)

$$M_0 = \{(e, u) \in H : e = 0, u \in \Omega_{\mathrm{ff}}\},$$
 (29)

- Which set we put $u \in \Omega_{\mathrm{ff}}$?
 - M_1 : complex constrained optimization problem $\min_{u \in \Omega_{\mathrm{ff}}} J_{k+1}$
 - M_0 : unconstrained optimization problem $\min_{\hat{u}} J_{k+1}$, and $u = P_{\Omega_{\mathrm{ff}}}(u)$

Illustration of alternating projections with input constraints

⁹Bing Chu et al. "Iterative learning control for constrained linear systems". In: *International Journal of Control* (2010).

#3 Constraint-aware ILC via alternating projections

- Alternating projection problem ← ILC design problem
 - Find two points minimizing the distance between

$$M_1 = \{(e, u) \in H : e = r - y, y = Gu\},$$
 (28)

$$M_0 = \{(e, u) \in H : e = 0, u \in \Omega_{\text{ff}}\},$$
 (29)

- Which set we put $u \in \Omega_{\mathrm{ff}}$?
- Chanlleges
 - How to settle $\Omega_{\rm ff}$ with respect to Ω ? (Soft constraints?)
 - How to analyze the learning efficiency?

Traditional ILC under constraints

Constraint-aware ILC

#3 Constraint-aware ILC design

- Constraint-aware ILC design
 - ullet Projection implementation o Minimizing the cost function

$$\min \|z_{\bar{k}+1} - z_{\bar{k}}\|_{H_c}^2 = \min_{u_{k+1} \in \Omega_{\mathrm{ff}}} J_{k+1}(u_{k+1}).$$
 (30)

• Define the Hilbert space H_C :

$$(e, u) \in H_C = \ell_2^m [1, N] \times \ell_2^l [0, N-1],$$
 (31)

$$\langle (e, u), (e, v) \rangle_{\{Q,R\}} = e^T Q z + u^T R v, \tag{32}$$

$$\|(e,u)\|_{\{Q,R\}} = \sqrt{\langle (e,u), (e,u)\rangle_{\{Q,R\}}}, \ Q \succ 0, \ R \succeq 0.$$
 (33)

Constraint-aware ILC update law

$$u_{k+1} = P_{\Omega_{ff}} \left(f \left(P_{\Omega_{ff}} \left(u_k \right), e_k \right) \right), \tag{34}$$

where $P_{\Omega_{\mathrm{ff}}}\left(\cdot\right)$ is the projection operator and $f\left(\cdot\right)$ is the solution of (30).

#3 Constraint-aware ILC analysis

Learning efficiency analysis

Theorem 3.1

Given the constraint set Ω , applying the constraint-aware ILC (34) yields the tracking error e_k converging with at most $\mathcal{K}+1$ trials under actuator saturation constraints, where for any initial point $z_0=(e_0,u_0)$ in H_C and some $\alpha\in(0,1)$,

$$\mathcal{K} = \left\lfloor \log_{1-\alpha^2} \left(\frac{\operatorname{dis}(M_1, M_0)}{\operatorname{dis}(z_0, M_0)} \right) \right\rfloor. \tag{35}$$

Traditional ILC under constraints

Constraint-aware ILC

#3 Case study

Simulation results

- Stabilizing feedback controller
- Compared to NOILC
- Input profiles
- Different choice of $\Omega_{\rm ff}$

#3 Case study

Simulation results

- Stabilizing feedback controller C
- Compared to NOILC
- Input profiles
- Different choice of $\Omega_{\rm ff}$

Experimental results

Desktop printer

Desktop printer

Experiment error norm

#3 Summary

- Advantages
 - Restrictions on the learning of ILC against instability
 - Constraint-aware design for improved learning efficiency
- Insights
 - Indirect ILC architecture for constraint-aware design
 - Handling ILC input constraints in practice
 - Linear design for non-linear dynamics (constraint non-linearity)
- Application scenarios
 - Piezo-stepper actuator for nano-manufacturing
 - Upper limb rehabilitation
 -

Outline

- 1 Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
- 4 Conclusion and Future work
- 5 Acknowledgments

Conclusion and Future work

Conclusion

- Optimal ILC for constrained systems with varying trial lengths
- Constraint-aware ILC for practical input constraints
- Improved learning efficiency via alternating projections

Future work

- Non-linear systems
- Direct data-based perspective
- Reinforcement learning-enabled design
- Practical applications

Outline

- Iterative learning control
- 2 Varying trial length problem
- 3 Alternating projection-based ILC
- 4 Conclusion and Future work
- 6 Acknowledgments

Acknowledgments

Zhihe Zhuang

Max van Meer

Tom Oomen

Yiyang Chen

Eric Rogers

Wojciech Paszke

DDCLS2025

Welcome to DDCLS2025 at Jiangnan University, Wuxi