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Iterative learning control (ILC)

Application examples
Gantry crane
Medical rehabilitation
Injection molding
Robotic arm

Goal
Perfect tracking by ILC

Insights
Repetitive
Learning

Reduce repetitive
disturbances!

Feedback only

Trial axis

ILC
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Repetitive systems with varying trial lengths

Foot motion assist device1

Left ventricular assist device2

Marine hydrokinetic energy system3

Mechanical ventilator4

1Thomas Seel et al. “Monotonic convergence of iterative learning control systems · · · ”. In: Int. J. Control. (2017).
2Maike Ketelhut et al. “Iterative learning control of ventricular assist devices · · · ”. In: Control Eng. Pract. (2019).
3Mitchell Cobb et al. “Flexible-time receding horizon iterative learning · · · ”. In: IEEE Trans. Control Syst. Technol. (2022).
4Joey Reinders et al. “Triggered repetitive control: Application to · · · ”. In: IEEE Trans. Control Syst. Technol. (2023).
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Varying trial length problem

Missing information for learning
Extra design for learning efficiency

Model assumption (Stochastic, deterministic)
Information compensation (zero, prediction, no compensation, · · · )
Design mechanisms (iteration-averaging, most recent one-order ,
event-based switching , optimal design , · · · )

Modified convergence analysis

Contraction mapping (linear or globally Lipschitz continuous
non-linear systems)
Lyapunov-based composite energy function (locally Lipschitz
continuous non-linear systems)
Variational analysis (fractional order systems)

Practical input constraints

k + 1

k

k − 1

k − 2

k − 3

k − 4

Trial index, k

Time, t

t = Nk

Illustration of varying trial length problem
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k + 2
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k
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k − 4

Trial axis, k

Time axis, t

Desired length
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5Xuefang Li et al. “An iterative learning control approach for linear systems · · · ”. In: IEEE Trans. Autom. Control. (2014)
6Dong Shen et al. “On almost sure and mean square convergence of P-type ILC · · · ”. In: Automatica. (2016)
7Thomas Seel et al. “Monotonic convergence of iterative learning control systems · · · ”. In: Int. J. Control. (2017)
8Deyuan Meng et al. “Deterministic convergence for learning · · · ”. In: IEEE Trans. Neural Netw. Learn. Syst. (2018)
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5Dong Shen et al. “On almost sure and mean square convergence of P-type ILC · · · ”. In: Automatica. (2016)
6Na Lin et al. “Auxiliary predictive compensation-based ILC · · · ”. In: IEEE Trans. Syst., Man, Cybern., Syst. (2019).
7Lele Ma et al. “Event-based switching iterative learning model predictive control · · · ”. In: IEEE Trans. Cybern. (2023).
8Xu Jin. “Iterative learning control for MIMO nonlinear systems with · · · ”. In: IEEE Trans. Cybern. (2021).
9Chen Liu et al. “Optimal learning control scheme for discrete-time · · · ”. In: IEEE Transactions on Cybernetics (2022).
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Why alternating projection-based design?

Alternating projection-based design
Intuitively and customizably geometric interpretation of problem
Hilbert space-enabled optimization methods
Practical constraint handling

Varying trial lengths
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#0 Alternating projections in Hilbert space

Example
H = R2

z = (x , y) powered by Cartesian product
Two convex sets

M1 =
{

(x , y) ∈ R2 : y = x
}

M0 =
{

(x , y) ∈ R2 : y = 0
}

zk+1 = PM0,M1 (zk) , arg min
z∈M0,M1

‖z − zk‖2
H

{zk}k≥0 converges to z∗ = M1 ∩M0

Extensions
High dimensions: x ∈ Rn and y ∈ Rm

More sets: M0,M1,M2, · · · ,MJ

vs. ILC
Proximity Algorithm: iterate to find a solution (Learning)
Full model inverse for one step convergence: z∗ = PM1∩M2 (z0)
Projection: optimal ILC design

z∗

z0

z1 = PM1
(z0)

z2 = PM0(z1)

z3

· · · · · ·
M0

M1

Alternating projections in R2
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#1 Problem formulation

Motivation: Optimal ILC design for learning efficiency

Lifted system with varying trial lengths





yk = Guk , uk ∈ `l2[0, N − 1], yk ∈ `m2 [1, N],
ek = Fk (r − yk),

Fk =

[
INk
⊗ Im 0
0 0Nd−Nk

⊗ 0m

]
.

(1)

ek =




Nd︷ ︸︸ ︷
eT
k (1), · · · , eT

k (Nk),︸ ︷︷ ︸
Nk

0, · · · , 0




T

Zero compensation

k + 2

k + 1

k

k − 1

k − 2

k − 3

k − 4

Trial axis, k

Time axis, t

Desired length

Deterministic model assumption

Definition 1.1

The ILC design problem is to find an ILC update law

uk+1 = f (ek , ek−1, · · · , uk , uk−1, · · · ), (2)

for zero convergence of the modified tracking error in (1), i.e.,

lim
k→∞

‖ek‖ = 0. (3)
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#1 Alternating projection-based ILC using multiple sets

Alternating projection problem ← ILC design problem
design a projection order to find a point in the intersection of:

Mj = {(e, u) ∈ H : e = Fj(r − y), y = Gu} ∈ {M1, · · · ,MJ},
M0 = {(e, u) ∈ H : e = 0} . (4)

Mj system dynamics
M0 tracking objective

Challenges

How to design a projection order?
How to implement the projection?

Notations

Projection operator: Pj(z) , arg min
ẑ∈Mj

‖ẑ − z‖2
H .

Index sequence: {jk}k≥0 where jk ∈ {1, 2, · · · , J}.

Projection sequence: {zk}k≥0 by zk+1 = Pjk+1
(zk).

......

0
M

j
M

1
M

2
M

Alternating projections between multiple sets
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#1 Projection order design

Projection order design
Necessary assumptions

Definition 1.2

The sequence s = {jk}k≥0 taking i infinitely many times yields

δ (s, i) = sup
n

[∆n+1 (i)−∆n (i)] <∞, (5)

where {∆n (i) ∈ N}n≥0 is an increasing sequence such that, at the
n-times, j∆n(i) = i with ∆0 (i) = 0.

k 1 2 3 4 5 6 7 8 · · · δ (s, 1) δ (s, 2) δ (s, 3)

jk 3 1 1 2 3 1 3 2 · · · 3 4 4

Table. Example with J = 3 until k = 8.
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#1 Projection order design

Assumption 1.1

Let F1 has full row rank and MJ ⊆ · · · ⊆ M2 ⊆ M1. M1 appears infinitely
many times during the alternating projections between Mj and M0, i.e.

δ (s, 1) = sup
n

[∆n+1 (1)−∆n (1)] <∞. (6)

Assumption 1.1 ← Deterministic model assumption

Full learning property

k + 2

k + 1

k

k − 1

k − 2

k − 3

k − 4

Trial axis, k

Time axis, t

Desired length

→ M1

→ M1
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#1 Projection order design

Projection order design
Necessary assumption: Assumption 1.1 (full learning property)
Projection order

Mjk =

{
Mj ∈ {M1,M2, . . . ,MJ} , k is odd,
M0, k is even.

(7)

Convergence analysis: Alternating projections under (7)

......

0
M

j
M

1
M

2
M

Projection order

Theorem 1.1

The sequence {zk}k≥0 converges in norm to the orthogonal projection of
z0 onto Mj ∩M0 under the projection order (7).a

aZhihe Zhuang et al. “Alternating projection-based iterative learning control for discrete-time systems with
non-uniform trial lengths”. In: International Journal of Robust and Nonlinear Control (2023).
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#1 Optimal ILC algorithms

Optimal ILC algorithm ← Projection implementation
Projection implementation → Minimizing the cost function

min
∥∥Pjk+1

(zk)− zk
∥∥2

H
= min Jk+1, zk+1 = Pjk+1

(zk). (8)

Define H by inner product and associated induced norm:

(e, u) ∈ H = `m2 [1, N]× `l2 [0, N − 1] , (9)

〈(e, u) , (y , v)〉{Q,R} =

Nd∑

i=1

eT (i)Qy (i) +

Nd−1∑

i=0

uT (i)Rv (i), (10)

‖(e, u)‖{Q,R} =
√
〈(e, u) , (e, u)〉{Q,R}, Q � 0, R � 0. (11)

Optimal ILC update law ← Jk+1 = ‖ek+1‖2
Q + ‖uk+1 − uk‖2

R

uk+1 = uk + Lek , (12)

where L = (GTQG + R)−1GTQ.
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#1 Case study

Transfer function

G (s) =
15.8869 (s + 850.3)

s
(
s2 + 707.6s + 3.377× 105

) , (13)

Sampling time 0.01s, operation time 2s, desired length Nd = 200.
Set Nk ∼ U(160, 200) where δ(s, 1) = 20, N3 = 200, and N23 = 200 .
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#1 Summary

Advantages
Optimal design without learning gain tuning

Weighting parameters Q and R vs. Arimoto-type learning gain

Straightforward but effective mechanisms

Zero compensation
Most recent one-order learning by lifted framework

Convergence guarantee under alternating projections

Insights
Special case: NOILC applied to linear systems with varying trial
lengths
Allow more design freedom: More numerial optimization methods
Extensions to other non-repetitive ILC problems

Trial-varying tracking references
Nonidentical initial state
Trial-varying system plant
· · · · · ·
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#2 Problem formulation

Motivation: Optimal ILC design using probability information

Lifted system with varying trial lengths





yk = Guk , uk ∈ `l2[0, N − 1], yk ∈ `m2 [1, N],
ek = Fk (r − yk),

Fk =

[
INk
⊗ Im 0
0 0Nd−Nk

⊗ 0m

]
.

(14)

Random variable Nk ∼ D(N−,Nd )

P(Nk = Ni ) = pi where
∑Nd−N−+1

i=1 pi = 1.
Stochastic information used: Mathematical expectation of Fk

F̄ , E {Fk}

= diag





N−−1︷ ︸︸ ︷
1, · · · , 1, p (Nk = N−) , · · · , p (Nk = Nd)




⊗ Im.

(15)

k + 1

k

k − 1

k − 2

k − 3

k − 4

Trial axis, k

Time axis, t

t = Nk

N− Nd

Stochastic model
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#2 Stochastic-optimization ILC via alternating projections

Definition 2.1

The ILC design problem is to find an ILC update law

uk+1 = f (ek , ek−1, · · · , uk , uk−1, · · · ), (16)

such that lim
k→∞

‖E{ek}‖ = 0.

Alternating projection problem ← ILC design problem

M1 = {(e, u) ∈ HE : e = E{F (r − y) }, y = Gu} , (17)

M0 = {(e, u) ∈ HE : e = 0} , (18)

HE = `m2 [1, N]× `l2 [0, N − 1] (19)

M1

M0

· · ·

Alternating projections between two sets
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#2 Stochastic-optimization ILC algorithm

Stochastic-optimization ILC algorithm
Projection implementation → Minimizing the cost function

min ‖zk+1 − zk‖2
HE

= min JEk+1 (20)

Define the Hilbert space HE :

〈(e, u) , (e, v)〉{Q,R} = eTQz + uTRv , (21)

‖(e, u)‖{Q,R} =
√
〈(e, u) , (e, u)〉{Q,R}, Q � 0, R � 0. (22)

Stochastic-optimization ILC ← JEk+1 = ‖E{ek+1}‖2
Q + ‖uk+1 − uk‖2

R

Theorem 2.1

Minimizing JEk+1 has a feedforward solution

uk+1 = uk + LEek , (23)

where LE =
(
GTKG + R

)−1
GTF̄TQ and K = E

{
FT
k QFk

}
.a

aZhihe Zhuang et al. “Iterative learning control for repetitive tasks with randomly varying trial lengths using
successive projection”. In: Int. J. Adapt. Control Signal Process. (2022).
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#2 Case study

Transfer function

G (s) =
15.8869 (s + 850.3)

s
(
s2 + 707.6s + 3.377× 105

) , (24)

Sampling time 0.01s, operation time 2s, desired length Nd = 200.
Set Nk ∼ U(160, 200) where δ(s, 1) = 20, N3 = 200, and N23 = 200 .
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#2 Summary

Advantages
Optimal design without learning gain tuning

Weighting parameters Q and R vs. Arimoto-type learning gain

Straightforward but effective mechanisms

Zero compensation
Most recent one-order learning by lifted framework

Convergence guarantee under alternating projections
Further optimization using probility information

Insights
More information used for optimization
Modified weights in learning gain
Extensions to other stochastic factors

Non-repetitive disturbances with known probility information
· · · · · ·
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Outline

1 Iterative learning control

2 Varying trial length problem

3 Alternating projection-based ILC
#0 Alternating projections in Hilbert space
#1 Alternating projection-based ILC using multiple sets
#2 Stochastic-optimization ILC via alternating projections
#3 Constraint-aware ILC via alternating projections

4 Conclusion and Future work
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#3 Why constraint-aware ILC?

Why constraint-aware ILC?
Mass example
Issues

Integral windup in iteration domain
Lower learning efficiency

Solution: Enable ILC with constraint awareness

Input constraints: Direct ILC vs. Indirect ILC (separately)
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#3 Why constraint-aware ILC?

Why constraint-aware ILC?
Mass example
Issues

Integral windup in iteration domain
Lower learning efficiency

Solution: Enable ILC with constraint awareness

Input constraints: Direct ILC5,6, ··· vs. Indirect ILC (separately)7,8,

···
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Indirect ILC design

5Ronghu Chi et al. “Constrained data-driven optimal iterative learning control”. In: J. Process Control (2017).
6Matthew C Turner et al. “Anti-windup compensation for a class of iterative learning · · · ”. In: 2023 ACC. IEEE. 2023.
7Sandipan Mishra et al. “Optimization-based constrained iterative · · · ”. In: IEEE Trans. Control Syst. Technol. (2010).
8Gijo Sebastian et al. “Convergence analysis of feedback-based iterative learning control · · · ”. In: Automatica. (2019).
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#3 Problem formulation

Process sensitivity uk → yk (without constraints):

yk = Guk , (25)

where the input constraint for ILC uk ∈ Ωff is unknown subject to:

Actuator constraints
Extra non-repetitive disturbances: uk + ufb

k ∈ Ω

C sat H

ILC

memory

ek

uk

ykufb
kr +

−

++

Closed-loop control block diagram

Definition 3.1
The ILC design problem is to find a suitable Ωff to solve the constrained
optimization problem

min
uk+1∈Ωff

Jk+1 (uk+1)

s.t. ek+1 = r − Guk+1,
(26)

to find an ILC algorithm generating ILC input sequence {uk+1}k≥0 such that ek+1

converges as k increases.
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#3 Constraint-aware ILC via alternating projections

Alternating projection problem ← ILC design problem
find two points minimizing the distance between

M1 = {(e, u) ∈ H : e = r − y , y = Gu} , (27)

M0 = {(e, u) ∈ H : e = 0, u ∈ Ωff} , (28)

Chanlleges

How to settle Ωff with respect to Ω? (Soft constraints)
How to analyze the learning efficiency?

M1

M0

· · ·

Illustration of alternating projections with input constraints
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#3 Constraint-aware ILC design

Constraint-aware ILC design
Projection implementation → Minimizing the cost function

min ‖zk+1 − zk‖2
HC

= min
uk+1∈Ωff

Jk+1 (uk+1) . (29)

Define the Hilbert space HC :

(e, u) ∈ HC = `m2 [1, N]× `l2 [0, N − 1] , (30)

〈(e, u) , (e, v)〉{Q,R} = eTQz + uTRv , (31)

‖(e, u)‖{Q,R} =
√
〈(e, u) , (e, u)〉{Q,R}, Q � 0, R � 0. (32)

Constraint-aware ILC update law

uk+1 = PΩff
(f (PΩff

(uk) , ek)) , (33)

where PΩff
(·) is the projection operator and f (·) is the solution of (29).
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#3 Constraint-aware ILC analysis

Learning efficiency analysis

Theorem 3.1

Given the constraint set Ω, applying the constraint-aware ILC (33) yields the
tracking error ek converging with at most K + 1 trials under actuator saturation
constraints, where for any initial point z0 = (e0, u0) in HC and some α ∈ (0, 1),

K =

⌊
log1−α2

(
dis(M1,M0)

dis(z0,M0)

)⌋
. (34)

M1

M0

· · ·

Traditional ILC under constraints

→

M1

M0

Constraint-aware ILC
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#3 Case study

Simulation results
Stabilizing feedback controller C
Compared to NOILC
Input profiles
Different choice of Ωff

Experimental results
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#3 Summary

Advantages
Restrictions on the learning of ILC against instability
Constraint-aware design for improved learning efficiency

Insights
Indirect ILC architecture for constraint-aware design
Handling ILC input constraints in practice
Linear design for non-linear dynamics (constraint non-linearity)

Application scenarios
Piezo-stepper actuator for nano-manufacturing
Upper limb rehabilitation
· · · · · ·
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Outline

1 Iterative learning control

2 Varying trial length problem

3 Alternating projection-based ILC

4 Conclusion and Future work
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Conclusion and Future work

Conclusion
Optimal ILC for constrained systems with varying trial lengths
Constraint-aware ILC for practical input constraints
Improved learning efficiency via alternating projections

Future work
Non-linear systems
Direct data-based perspective
Reinforcement learning-enabled design
Practical applications

Thank you!
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