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An Optimal Iterative Learning Control Approach
for Linear Systems with Nonuniform Trial Lengths

under Input Constraints
Zhihe Zhuang, Hongfeng Tao, Yiyang Chen, Vladimir Stojanovic, and Wojciech Paszke

Abstract—In practical applications of iterative learning control
(ILC), the repetitive process may end up early by accident
during the performance improvement along the trial axis, which
yields the nonuniform trial length problem. For such practical
systems, input signals are usually constrained because of some
certain physical limitations. This paper proposes an optimal
ILC algorithm for linear time-invariant multiple-input multiple-
output (MIMO) systems with nonuniform trial lengths under
input constraints. The optimal ILC framework is specifically
modified for the nonuniform trial length problem, where the
primal-dual interior point method is introduced to deal with
the input constraints. Hence, the constraint handling capability
are improved compared with the conventional counterparts
for nonuniform trial lengths. Also, the monotonic convergence
property of the proposed optimal ILC algorithm is obtained in
the sense of mathematical expectation. Finally, the effectiveness
of the proposed algorithm is verified on the numerical simulation
of a mobile robot.

Index Terms—Iterative learning control (ILC), nonuniform
trial length, input constraint, primal-dual interior point method.

I. INTRODUCTION

ITERATIVE learning control (ILC) is an effective approach
that uses previous experiment data to handle the repetitive

control processes, including chemical batch processing [1],
[2], industrial robotic systems [3], robotic-assisted biomedical
systems [4], networked stochastic systems [5], etc. Different
from traditional control methodologies, ILC improves the
tracking performance for repetitive signals by learning from
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the historical information. Therefore, it is required that each
trial operates over a finite time interval. More precisely, ILC
employs the stored input and tracking error information from
previous trials or even the current trial to update the input
signal of next trial. Moreover, ILC is an open-loop control
and usually has no feedback mechanism to respond to unantic-
ipated, non-repeating disturbances [6]. More information can
be obtained through surveys on ILC including [7]–[9].

In practical industrial processes, the classic postulate that
each trial length must be identical cannot be always satisfied
[10]. For instance, ILC can be used in functional electrical
stimulation (FES) to help stroke patients who suffer from foot
drop due to the repetitiveness of foot motion. However, FES
should be applied at least before the initial contact between
the foot and ground was detected for safety reasons, which
thus leads to nonuniform trial length problem [11]. Another
instance occurs in a gantry crane with output constraints [12].
Because the gantry crane cannot operate beyond a region
restricted by some obstacles around, the duration of tracking is
going to be nonidentical when using ILC schemes. In practice,
obstacles may exist around the desired trajectory more or less
when ILC is utilized to perform the trajectory tracking task,
so the nonuniform trial length problem may be attributed to
the output constraints. A further simulation example will be
discussed in section V.

Due to generality of the nonuniform trial length problem,
plenty of research has been conducted specifically. The main
schemes to handle this problem concentrate on the enhance-
ment of learning efficiency, such as [13]–[19]. However, dif-
ferent forms of methods lead to different control performance.
Methods using traditional P-type ILC implementation such as
[13]–[15], are a kind of lazy pattern, which means lower speed
of convergence and poorer robustness to the randomness of
nonuniform trial lengths. In [16]–[19], the iteration average
operator was introduced to improve the utilization of historical
information, while the performance may become poorer as the
number of iteration increases, because the average operator
may weaken the effect of the instant learning. Besides, a more
effective method that uses the most recent existing trial infor-
mation was proposed in [20], where the current time instant
only benefits from the most recent existing trial information
correspondingly. In contrast to simple zero compensation
mechanism, an auxiliary model was employed to estimate the
predictive outputs when the trial ends suddenly, which gives
another direction to solve the nonuniform trial length problem
[21]. However, the aforementioned research only focuses on
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enhancing the learning efficiency and the optimality cannot
be guaranteed for a specific objective. Therefore, optimal
ILC methods, such as norm optimal ILC in [22], [23] and
successive projection design in [24], [25], can be utilized.

As an indispensable part of the industrial processes, input
constraints usually should be fully taken into consideration
[26], especially when adopting optimal ILC methods. In
[27], a boundary ILC for a flexible riser system with input
saturation was constructed, where the issue of input saturation
was handled by proposing an auxiliary term. Some research
on optimal ILC design with input constraints has been also
investigated, where the ILC problem is usually reformulated
to a constrained optimization problem. A norm optimal ILC
for time-varying linear systems with inequality constraints
was revisited and generalized under deterministic, stochastic
disturbances and noises in [28]. A successive projection frame-
work for constrained ILC problems was proposed in [29],
where the monotonic convergence property of the optimal ILC
algorithms was derived. Moreover, the data-driven constrained
optimal ILC methods for both linear and nonlinear systems
were proposed in [30] and [31] respectively. Nevertheless,
these constrained optimal ILC methods only discuss the feasi-
bility and do not attempt to further improve the performance
under input constraints.

Plenty of efficient optimization methods from numerical
optimization theory were considered to better handle optimal
ILC problems with input constraints. In [32], the barrier
method was introduced in the ILC algorithm design, where the
restriction that global optimal solution of the unconstrained
problem should exist in the constraint set was removed. In
addition, the ILC design with barrier method was extended
to the point-to-point tracking task in [33]. In contrast to the
barrier method, the primal-dual interior point method was
considered in [34], while it focuses more on the reduction
of computational complexity during the optimal ILC process
by use of the sequentially semi-separable structure. In [35],
a Newton-type optimization method was introduced in the
data-driven ILC design and the monotonic convergence of
tracking errors was thus theoretically guaranteed under specific
circumstances. However, the convergence criterion was seldom
given for certain optimal performance in aforementioned op-
timization method ILC designs, except for [36], where the
criteria for monotonic and global convergence were presented
for general first-order ILC laws with projection.

Since the interior point designs above are all based on the 2-
norm cost function, a modified interior point method was used
in optimal ILC design with non-smooth type cost functions
in [37]. In [38], the BFGS (Broyden, Fletcher, Goldfarb,
Shanno) optimization algorithm was extended to ILC design
under input inequality constraints to achieve monotonic and
super-linear convergence properties. Also, a new optimal ILC
method under time-varying uncertainty was proposed in [39],
where the ILC problem was reformulated in the framework
of convex-concave game and thus it can be solved by a
subgradient method. In [40], point-to-point ILC problem under
bounded trial-varying initial conditions was reformulated as
a worst-case norm optimal problem, which can accordingly
be solved by the Lagrange dual approach. However, there

exist more complex practical implementations in most of the
aforementioned methods and little convergence analysis stud-
ies are conducted in a theoretical way. Besides, uncertainties
against ILC design postulates, e.g. the nonuniform trial length
problem, are seldom considered in these optimization ILC
processes.

In this paper, an optimal ILC algorithm for linear time-
invariant multiple-input multiple-output (MIMO) systems with
nonuniform trial lengths under input constraints is developed.
With modifications for the nonuniform trial length problem,
the ILC problem is transformed into a constrained optimization
problem and hence the primal-dual interior point method
can be used to enhance the constraint handling capability
during the ILC process. Moreover, monotonic convergence
property of the modified tracking error is achieved in the
sense of mathematical expectation. Robustness of the proposed
algorithm to both model uncertainty and nonuniform trial
lengths are analyzed. A mobile robot with two independent
driving wheels is chosen as a numerical simulation example
to verify the effectiveness.

The main contributions are summarized as follows:
1) An optimal ILC algorithm for problems with nonuni-

form trial lengths under input constraints is developed.
2) Compared with the ILC approaches for nonuniform trial

lengths such as in [13]–[19], the proposed algorithm
enhances the input constraint handling capability by
introducing the primal-dual interior point method.

3) Compared with the barrier method based ILC design
such as in [32], [33], [37], the proposed algorithm is
easier to implement and can deal with the practical
situation that the input signals are not feasible.

4) The monotonic convergence property of the proposed
algorithm is obtained in the sense of mathematical
expectation.

This paper is organized as follows. First of all, the problem
formulation is addressed in Section II. Section III introduces
an ILC algorithm based on a primal-dual interior point method
for problems with nonuniform trial lengths under input con-
straints. Main results of this paper are given in Section IV.
Simulation verification is shown in Section V. The conclusions
and future work are given in Section VI.

The main notations in this paper are listed: E {·} and P {·}
denote the mathematical expectation and the probability of an
event, respectively. N denotes the set of natural numbers and
Rn and Rn×m denote the sets of n-dimensional real vectors
and n × m real matrices, respectively. T in the superscript
denotes the transposed component of a vector. The superscript
(i) denotes the i-th component in a vector. The inequality
notation ≥ and ≤ for vectors means comparison on each
components. ‖·‖2 is denoted as ‖·‖ for simplicity. ⊗ denotes
the Kronecker product. Other notations will be introduced as
required.

II. PROBLEM FORMULATION

In this section, the system dynamics is firstly introduced
with mathematical notations. Then, the nonuniform trial length
and input constraint problem are formulated under the lifted
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system framework. The ILC design problem with nonuniform
trial lengths under input constraints is finally defined.

A. System Dynamics

Consider the stable closed loop dynamics of the feedback
control system with the state space form{

xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

where t ∈ N and the subscript k ∈ N denote the trial number
and time index, respectively. Nd is the desired trial length
with t ∈ [0, Nd]. xk(t) ∈ Rn, uk(t) ∈ Rl and yk(t) ∈ Rm

denote the state, input and output vectors, respectively. A, B
and C are system matrices with appropriate dimensions with
CB 6= 0 for controllability of the system. yd(t) is defined
as the desired output trajectory. The initial condition satisfies
E{xk(0)} = xd(0).

Reformulating the system (1) into a lifted system framework
along the trial yields

yk = Guk + dk, (2)

where

uk =
[
uTk (0), uTk (1), . . . , uTk (Nd − 1)

]T
, (3)

yk =
[
yTk (1), yTk (2), . . . , yTk (Nd)

]T
. (4)

G and dk denote the system model and the effect of the initial
conditions respectively, i.e.

G =


CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
...

...
...

...
CANd−1B CANd−2B CANd−3B · · · CB

, (5)

dk =
[

(CA)
T (

CA2
)T · · ·

(
CANd

)T ]T
xk(0). (6)

By E{xk(0)} = xd(0), dd is given as

dd =
[

(CA)
T (

CA2
)T · · ·

(
CANd

)T ]T
xd(0), (7)

and the desired output vector yd is

yd =
[
yTd (1), yTd (2), . . . , yTd (Nd)

]T
. (8)

B. Modified ILC Problem Definition

Classical ILC schemes requires that every trial operates with
a fixed duration. For the nonuniform trial length situation,
the available error information can still be useful for the
subsequent trial. To better utilize such available information
for optimal ILC design, zero signal values can be appended
to the absent time instances. Moreover, set the desired trial
length as the maximum one, then the modified tracking error
is defined as

ek =


Nd︷ ︸︸ ︷

eTk (1), · · · , eTk (Nk),︸ ︷︷ ︸
Nk

0, · · · , 0


T

, (9)

where Nk denotes the actual trial length of the k-th trial.
Denote the minimum actual length by Nm, then Nk randomly
varies within {Nm, Nm + 1, · · · , Nd}. Hence there will be
ns = Nd − Nm + 1 possible trial lengths in total. Define
the probability of Nm, Nm + 1, · · · , Nd appearing along the
trial as p1, p2, · · · , pns

respectively, then
ns∑
i=1

pi = 1, (10)

where pi > 0, for 1 ≤ i ≤ ns. A random matrix is introduced
as

Mk =

[
INk
⊗ Im 0
0 0

]
∈ R(m·Nd)×(m·Nd), (11)

where Il denotes unit matrix with dimension of l × l and 0
denotes the zero matrix with appropriate dimension. Then

ek = Mk (yd − yk) . (12)

To calculate the mathematical expectation of the random
matrix, another random variables χk(t) ∈ {0, 1} is introduced
to represent whether the output occurs at time t at the k-th
trial as in [16]. For simplicity, the mathematical expectation
of different dimensions in random matrix is set identical. Let
χk(t) = 1 represents the event that the output of time t occurs.
Denote its probability by p(t), then

p (t) = P {(χk(t) = 1)} =


1, t ≤ Nm − 1,
ns∑

i=t−Nm+1

pi, Nm ≤ t ≤ Nd,

(13)
which yields E {χk(t)} = p (t), hence

E {Mk}

=diag


Nm−1︷ ︸︸ ︷

1, 1, · · · , 1, E {χk(Nm)} , · · · , E {χk(Nd)}

⊗ Im
= diag


Nm−1︷ ︸︸ ︷

1, 1, · · · , 1, p (Nm) , · · · , p (Nd)

⊗ Im ∆
= M̄.

(14)

C. Input Constraints

Taking the safety reason or the limitations of actuators into
considerations, input constraints always exist in practice and
are often expressed in the form of mathematical inequalities.
Three practical forms of input constraints are listed.
• Input saturation constraint:

umin ≤ uk+1 ≤ umax, (15)

where umin and umax are the lower and upper bounds of
the input vector uk+1.
• Input increment constraint with respect to the trial index:

∆umin ≤ ∆uk+1 = uk+1 − uk ≤ ∆umax, (16)

where ∆umin and ∆umax are the lower and upper bounds
on the change of control input along the trial index.
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• Input increment constraint with respect to the time index:

δumin ≤ δuk+1 (t) =uk+1 (t)− uk+1 (t− 1) ≤ δumax, (17)

where δumin and δumax are the lower and upper bounds on
the change of control input along the time index.

Moreover, the constraint (16) is changed to be

∆umin + uk ≤ uk+1 ≤ ∆umax + uk. (18)

Assume δuk (0) = uk (0), then

δuk+1 = µuk+1, (19)

where

µ =


Il 0l · · · 0l 0l
−Il Il · · · 0l 0l

0l −Il
. . .

... 0l
...

. . . . . . . . .
...

0l 0l · · · −Il Il

 ∈ R(l·Nd)×(l·Nd). (20)

Then, reformulate (17) as

δumin ≤ µuk+1 ≤ δumax, (21)

Finally, the three input constraints are organized as

ζuuk+1 ≥ ζk+1, (22)

where

ζu =


I
−I
µ
−µ

 , ζk+1 =


max (umin,∆umin + uk)
−min (umax,∆umax + uk)

δumin

−δumax

 ,
(23)

where I is the identity matrix with appropriate dimension.
Note that the inequality constraints on uk+1 defined in (22)
is associated with uk, which means the scope of input con-
straints may vary along the trial. This is because the input
saturation constraint and the input increment constraint with
respect to the trial index influence each other to some extent.
Nonetheless, the global input constraint set, denoted by Ω, is
still a convex set according to the definition of (15), (16) and
(17).

D. ILC Design Problem
The ILC design problem in this paper is given as follows:
Definition 1: The ILC design problem with nonuniform trial

lengths under input constraints aims at designing an input
update law

uk+1 = f(uk, uk−1, · · · , ek, ek−1, · · · ), (24)

which consists of historical input and tracking error informa-
tion, such that the modified tracking error converges to zero
as k →∞ in the sense of mathematical expectation along the
trials, namely,

lim
k→∞

‖E {ek}‖ = 0. (25)

Definition 1 describes the problem discussed in this paper
with simple and clear mathematical expression, which pro-
vides the necessary theoretical basis for the control algorithm
design next.

III. CONSTRAINED ILC DESIGN

In this section, the constrained ILC problem is reformulated
as a quadratic programming (QP) problem, so some efficient
numerical optimization methods with iterative search schemes,
e.g. interior point methods, can be employed to solve it.
By embedding experimental data in each iteration, an ILC
algorithm can be developed to solve the ILC design problem
in Definition 1.

A. Reformulated as a QP Problem

A cost function is firstly defined for the ILC design problem
in Definition 1, which consists of the weighting norms of both
modified error and control input increment. As an additional
term, the input increment is a necessary condition for optimal
ILC algorithms to achieve complete tracking and results in the
smoothness of input signals. The cost function is defined as

J (uk+1) = ‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R , (26)

where Q and R are symmetric positive definite weighing
matrices with appropriate dimensions. Then, substituting (12)
into the cost function (26) and transforming it into the form
with respect to uk+1 yield

J (uk+1) = uTk+1

(
GT K̄G+R

)
uk+1

− 2
[
uTk
(
GT K̄G+R

)
+ eTkQM̄G

]
uk+1 + d,

(27)
where K̄ = M̄TQM̄ and

d = uTkRuk + (yd − dd)
T
K̄ (yd − dd) .

Therefore, the constrained ILC problem can be reformulated
as a QP problem under inequality constraints, i.e.,

min
uk+1

J (uk+1) = 1
2u

T
k+1Huk+1 + cTuk+1 + d

s.t. ζuuk+1 − ζk+1 ≥ 0,
(28)

where

H = 2
(
GT K̄G+R

)
,

cT = −2
[
uTk
(
GT K̄G+R

)
+ eTkQM̄G

]
,

and H is a positive definite matrix since the weighting matrices
Q and R are positive definite.

B. Primal-Dual Interior Point Method Design

The primal-dual interior point method is employed to solve
the inequality constrained QP problem, which can hence
develop an ILC algorithm for the ILC design problem defined
by Definition 1. To begin with, an efficient primal-dual interior
point method is introduced. Define the dual variable λ ∈ Rs

with s = 4l · Nd. Since H is positive definite, the optimal
solution of (28) is unique and satisfies the following Karush-
Kuhn-Tucker (KKT) conditions:

Huk+1 + c− ζTu λ = 0,

ζuuk+1 − ζk+1 ≥ 0,

(ζuuk+1 − ζk+1)
(i)
λ(i) = 0, i = 1, 2, . . . , s,

λ ≥ 0.

(29)
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Introduce the slack variable ω ∈ Rs to give rise to the modified
KKT conditions:

Huk+1 + c− ζTu λ = 0,

ζuuk+1 − ζk+1 − ω = 0,

ΛWβ = ϕβ,

λ, ω ≥ 0,

(30)

where

Λ = diag
(
λ(1), λ(2), · · · , λ(s)

)
,

W = diag
(
ω(1), ω(2), · · · , ω(s)

)
,

β = [1, 1, · · · , 1]
T ∈ Rs,

ϕ = δ · θ/s, δ ∈ (0, 1) .

θ = λTω denotes the complementarity in the path-
following methods, which can be also seen as the dual-
ity gap for the convex problem (28). Decreasing θ yields
that the solution of the modified KKT conditions (30)
converges to the global optimal solution. For arbitrary
ϕ > 0, the solution of modified KKT conditions (30) is
unique and denote it as uk+1(ϕ), λ(ϕ), ω(ϕ). In addition,
{uk+1(ϕ), λ(ϕ), ω(ϕ)|ϕ > 0} is defined as the central path of
the primal problem (28). By reducing ϕ continuously, duality
gap gets smaller so as to keep approaching to the global
optimal solution.

When fixing ϕ and applying Newton’s method, substitute
(uk+1, λ, ω) in (30) with (uk + ∆ūk+1, λ+ ∆λ, ω + ∆ω)
and ignore the quadratic terms, then we have −H ζTu 0

ζu 0 −Is
0 W Λ

 ∆ūk+1

∆λ
∆ω

 =

 σ
ρ

ϕβ − ΛWβ

 ,
(31)

where
σ = Huk + c− ζTu λ,
ρ = ζk+1 − ζuuk + ω,

and ∆ūk+1, ∆λ and ∆ω denote the step directions.
The step directions will be obtained by computing (31)

subject to the condition that the step length α is 1. Nonetheless,
it is only required both dual and slack variables are positive
definite as in (30), i.e.,

λ(i) + αpri∆λ(i) > 0,
ω(j) + αdual∆ω(j) > 0,

i, j = 1, 2, . . . , s, (32)

where αpri and αdual denote the step lengths demanding the
positive definite of the dual and slack variables respectively.
Introduce a parameter τ ∈ (0, 1) to achieve the equality, then

αpri = max
{
α : τλ(i) + α∆λ(i) ≥ 0, i = 1, 2, . . . , s

}
,

(33)

αdual = max
{
α : τω(j) + α∆ω(j) ≥ 0, j = 1, 2, . . . , s

}
,

(34)

where τ is often close to but strictly less than 1 so as to
accelerate the convergence.

Note that σ, ρ and θ correspond to left-hand side of the
first three equations defined in the modified KKT conditions

(30). Therefore, by introducing a stopping parameter ε, we
can claim that an approximately optimal solution of (28) is
obtained if ‖σ‖ < ε, ‖ρ‖ < ε and ‖ϕ‖ < ε. Although the
primal-dual interior point method is really Newton’s method
supplemented by variable step lengths, the cost function is
improved at each trial. An extensive study about the primal-
dual interior point method can be referred to [41]. Moreover,
it is better to choose an initial point that is far away from
the boundary where λ, ω = 0. In this case, the optimization
process may take long steps in the first few trials. Further
choice of the initial point can be referred to [42].

C. A Constrained Optimal ILC Algorithm

By calculating the step directions and lengths as (31), (33)
and (34), a practical optimal ILC algorithm for the nonuniform
trial length problem under input constraints can be developed.
The main modification of the proposed optimal ILC algorithm
compared to the primal-dual interior point method lies in the
use of experimental data, and hence one trial corresponds to
one update of step directions of Newton’s method in (31).

Algorithm 1 A Constrained Optimal ILC Algorithm

Input: System dynamics (1), weighting matrices Q,R, initial
input u0 ∈ Ω and λ0, ω0 > 0, parameters δ ∈ (0, 1),
τ ∈ (0, 1) and ε > 0.

Output: A sequence {uk}k≥0 to solve the ILC design prob-
lem in Definition 1.

1: repeat
2: Calculate the two step lengths αpri

k and αdual
k using (33)

and (34);
3: Set the step length αk = min

{
αpri
k , αdual

k

}
with αk ∈

(0, 1];
4: Calculate σ, ρ and ϕ in (31);
5: Solve (31) to get the step directions ∆ūk+1, ∆λk+1

and ∆ωk+1;
6: Set

uk+1 ← uk + αk∆ūk+1, (35)
λk+1 ← λk + αk∆λk+1, (36)
ωk+1 ← ωk + αk∆ωk+1; (37)

7: until ‖σ‖ < ε, ‖ρ‖ < ε and ‖ϕ‖ < ε
8: return {uk}k≥0.

The general block diagram of the proposed ILC design is
given in the left-hand side of Fig. 1. Different from the ILC
design using the barrier method such as in [32], [33], [37],
there is only one layer of loop in the primal-dual method
design, where associated auxiliary variables are simultane-
ously updated for an easier implementation. The general block
diagram of the barrier method design is also given in the right-
hand side of Fig. 1. Note that there are both inner and outside
loop in the barrier method ILC design typically, where the
input signals should be strictly feasible.

Remark 1: When it comes to the optimal control of complex
nonlinearities and unknown dynamics, the intelligent critic
framework for advanced optimal control, as investigated in
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Fig. 1. The general block diagrams of two interior point methods in ILC design.

[43], [44], can be considered as a potential direction, where re-
inforcement learning is regarded as a key learning mechanism.
Fortunately, there have been some studies on the combinations
of reinforcement learning and ILC as in [45], [46].

To explain how Algorithm 1 can solve the ILC design
problem in Definition 1, a proposition is presented as follows.

Proposition 1: The input sequence generated by Algorithm
1 iteratively solves the ILC design problem in Definition 1.

Proof: Given initial control input signals u0, as well as
modified problem definition for nonuniform trial lengths, the
control input sequence generated by (35) in Algorithm 1 is
within input constraints.

Furthermore, the input signals of next trial always continue
to the time instant Nd no matter when the next trial stops.
Therefore, Algorithm 1 is causal in practice and hence can
solve the ILC design problem in Definition 1 iteratively.

A causal ILC algorithm for the nonuniform trial length prob-
lem is proposed by using the primal-dual interior method to
deal with the input constraints. In next section, the convergence
properties of the designed ILC system will be discussed.

IV. MAIN RESULTS

Before conducting the convergence analysis, a typical as-
sumption on the input signal is given firstly.

Assumption 1: There exists a desired input ud ∈ Ω such that
the tracking error of systems with nonuniform trial lengths
converges to zero in the sense of mathematical expectation.

Assumption 1 ensures that systems with nonuniform trial
lengths are possible to achieve the zero tracking error for
certain reference trajectory in the sense of mathematical ex-
pectation.

A. Boundedness of Input Signal
To begin with, a technical lemma is introduced to ensure

that the solution of (29) is the global solution of (28).
Lemma 1: If u∞ satisfies the conditions (29) for λ(i), i =

1, 2, . . . , s, and H is positive definition, then u∞ is a global
solution of (28).

Proof: See Theorem 16.4 in [47] for more details.
With Lemma 1, the result that Algorithm 1 can find out the

global solution of (28) is given next.
Theorem 1: When Assumption 1 holds, given systems

described by (1), apply Algorithm 1 yields that the input
sequence {uk}k≥0 converges to the global solution u∞ of the
constrained QP problem (28).

Proof: Firstly, add trial index to ρ, σ and θ in (31).
Substituting update law (35) and (37) of Algorithm 1 into
ρk+1 yields

ρk+1 = ρk − αk (ζu∆ūk+1 −∆ωk+1) . (38)

It follows from (31) that

ζu∆ūk+1 −∆ωk+1 = ρk, (39)

then
ρk+1 = (1− αk) ρk, (40)

and similarly
σk+1 = (1− αk)σk. (41)

For the duality gap, there exists

θk+1 = λTk+1ωk+1

= (λk + αk∆λk+1)
T

(ωk + αk∆ωk+1)

= θk + αk

(
∆λTk+1ωk + λTk ∆ωk+1

)
+ α2

k∆λTk+1∆ωk+1,

(42)
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where

∆λTk+1ωk + λTk ∆ωk+1 = βT (Wk∆λk+1 + Λk∆ωk+1)

= βT (ϕkβ − ΛkWkβ)

= δθk − θk.
(43)

Then, substituting (43) to (42) and ignoring the quadratic terms
∆λTk+1∆ωk+1 yield

θk+1 = [1− (1− δ)αk] θk. (44)

Moreover, since αk ∈ (0, 1], it follows from (40) that

‖ρk+1‖ ≤ (1− αk) ‖ρk‖ ≤ · · · ≤ (1− αk)
k+1‖ρ0‖, (45)

and similarly

‖σk+1‖ ≤ (1− αk) ‖σk‖ ≤ · · · ≤ (1− αk)
k+1‖σ0‖. (46)

For (44), it follows that

θk+1 ≤ [1− (1− δ)αk] θk ≤ . . . ≤ [1− (1− δ)αk]
k+1

θ0.
(47)

Combining (45), (46) and (47) with δ ∈ (0, 1) and αk ∈ (0, 1],
a solution that satisfies the KKT condition (29), i.e. u∞, is
eventually found as k →∞, namely,

lim
k→∞

uk = u∞. (48)

Therefore, since H is positive definite, u∞ is the global so-
lution of the constrained optimization problem (28) according
to Lemma 1 and the proof is complete.

After finding the global solution u∞, the relationship be-
tween u∞ and ud in Assumption 1 is explored to show the
convergence properties of Algorithm 1.

B. Convergence Properties of Algorithm 1

Given the need for convergence analysis, the cost function
can be seen as a point with respect to both the tracking
error and input signal, i.e., J (uk+1) can be denoted by
J (E {ek+1} , uk+1) as required. Then, a theorem for conver-
gence properties of Algorithm 1 is given.

Theorem 2: When Assumption 1 holds, given systems
described by (1), applying Algorithm 1 yields

‖E {ek}‖ ≥ ‖E {ek+1}‖ , (49)

and
lim
k→∞

‖E {ek+1}‖ = 0. (50)

Proof: For the cost function (26), applying Algorithm 1
yields

J (E {ek} , uk) = ‖E {ek}‖2Q
≥ J (E {ek+1} , uk+1)

= ‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R ,
(51)

then the monotonic convergence property (49) is obtained.
Moreover, substitute the update law of uk+1 (35) to the

tracking error (12) and fix ∆ūk+1 = 0, then

E {ek+1} = E {ek} − M̄Gαk∆ūk+1 = E {ek} , (52)

which means (E {ek} , uk+1) is also a feasible point in the
convex set Ω. Then, it follows from (51) that

J (E {ek} , uk)−∆uTk+1R∆uk+1

= J (E {ek} , uk+1)

≥ J (E {ek+1} , uk+1) ≥ 0,

(53)

which yields

J (E {e0} , u0) ≥ J (E {ek+1} , uk+1) +

k+1∑
i=1

∆uTi R∆ui ≥ 0.

(54)
Since J (E {e0} , u0) <∞, then

lim
k→∞

∆uk+1 = 0. (55)

Recall that (E {e∞} , u∞) is the global solution of the
constrained optimization problem (28), so any direction of the
directional derivative with respect to the cost function (26) at
the point (E {e∞} , u∞) is no less than zero. Considering the
directional derivative from (E {e∞} , u∞) to (0, ud) defined
in Assumption 1, it follows that

∇JT |(E{e∞},u∞) ·
[
−E {e∞}
ud − u∞

]
=
[
E
{
eT∞
}
Q ∆uT∞R

]
·
[
−E {e∞}
ud − u∞

]
= −E

{
eT∞
}
QE {e∞}+ ∆uTk+1R (ud − u∞) ≥ 0,

(56)

which yields

∆uT∞Rud ≥ E
{
eT∞
}
QE {e∞}+ ∆uTk+1Ru∞ ≥ 0, (57)

and hence lim
k→∞

‖E {ek+1}‖ = 0 according to (55). Finally,
(50) is obtained and the proof is complete.

Theorem 2 reveals that applying Algorithm 1 yields the
tracking error converges to zero in the sense of mathematical
expectation with u∞ = ud. In other words, the sequence
{uk}k≥0 generated by Algorithm 1 can converge to the desired
input in Assumption 1. Nonetheless, Assumption 1 is not
always true in practice, and hence it is also important to
investigate the case that Assumption 1 does not hold. For the
convex QP problem under inequality constraints, the global
solution must be on the boundary of convex constraint set.
When Assumption 1 does not hold, denote the optimal solution
under inequality constraints as u∗s , then each component of u∗s
may reach to the boundary or partially, which depends on the
relationship between Ω and ud. Moreover, a corollary is given
as follows.

Corollary 1: When Assumption 1 does not hold, given
systems with nonuniform trial lengths (1), applying Algorithm
1 yields

lim
k→∞

‖E {ek}‖=
∥∥M̄ (yd −Gu∗s − dd)

∥∥ . (58)

Proof: Under input constraints, the input signal cannot
converge to ud, which yields

lim
k→∞

uk = u∗s. (59)

Then, according to the result of Theorem 2, (58) is obtained
and the proof is complete.
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In Corollary 1, the convergence boundary is obtained when
Assumption 1 does not hold. Furthermore, Algorithm 1 can
take a nontrivial step along each trial to get closer to the
theoretical boundary derived from Corollary 1.

C. Robustness Analysis

From the practical point of view, the control input under
nominal model is not enough to show the efficacy of the
proposed algorithm. Therefore, the robustness of Algorithm
1 against model uncertainty is investigated, where a bounded
additional modeling error factor ∆G that varies along the time
is employed. The uncertainty model is defined as

Ĝ = G (I + ∆G) . (60)

Definition 2: The ILC update law (35) is referred to as
robust monotonic convergent (RMC) if there exists αk for each
k ∈ N such that J (uk + αk∆ûk+1) ≤ J (uk) with respect to
uncertainty model Ĝ, where ûk+1 is the solution of (31) under
uncertainty model. In other words, the cost function is non-
increasing.

Theorem 3: Algorithm 1 is RMC if there exists γ satisfying
‖∆G‖ < γ such that∥∥∥∆K̂ +R

∥∥∥ ≤ 2

‖∆ûk+1‖

(∥∥∥ĜK̄ (yd − dd)
∥∥∥+

∥∥∥∆K̂uk

∥∥∥) ,
(61)

for each k ∈ N, where ∆K̂ = ĜT K̄Ĝ.
Proof: According to Definition 2, if Algorithm 1 is RMC,

the cost function is non-increasing for any bounded modeling
error ∆G, i.e.

max
∆G

J (uk + αk∆ūk+1) ≤ J (uk) . (62)

Substituting the cost function (26) yields

max
∆G

{
‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R

}
≤ ‖E {ek}‖2Q ,

(63)
which can be reformulated as

‖∆ûk+1‖2(∆K̂+R) ≤ 2∆ûTk+1

(
ĜT K̄ (yd − dd)−∆K̂uk

)
,

(64)
for α ∈ (0, 1). Then, (61) is obtained by utilizing the property
of induced norm.

Remark 2: For unmodeled dynamics and uncertainties in
ILC, a potential direction is to employ the new fuzzy logic
systems to learn the behavior of the unknown dynamics due
to the universal approximation property. To be more specific,
the type-3 fuzzy logic system can be considered due to its
better uncertainty modeling capability in contrast to type-1
and type-2 fuzzy systems. Since the effects of uncertainties
and unmodeled dynamics are just handled by ILC itself as is
shown in Theorem 3, the type-3 logic system can be embedded
in the ILC design to further suppress them. More investigations
of fuzzy logic systems in ILC can be referred to [48], [49] and
the latest research results of fuzzy logic systems, including the
type-3 fuzzy logic system, can be obtained in [50]–[53].

In addition, the variation of trial lengths is also a kind of
uncertainty. To check the robustness of Algorithm 1 against
the varying trial lengths, a performance index, which can be

seen as the variance of modified error vectors, is introduced as
follows. To begin with, a property of the varying trial length
problem is introduced, i.e.

P {χk(a)χk(b) = 1} = P {χk(a) = 1} = p (a) , a > b,
(65)

for any a, b ∈ [1, Nd]. In other words, if there exists an
output at the later time instant, there must exist an output at
the previous time instant, but the opposite is not necessarily
true. Then, based on the property (65), the variance of error
vector can be calculated by

D {ek+1}=E
{

(ek+1 − E {ek+1}) (ek+1 − E {ek+1})T
}

=E {Dp}Z − M̄ZM̄T ,
(66)

where

Z=(yd −Guk+1 − dd)(yd −Guk+1 − dd)T ,

E {Dp}=


p(1) p(2) p(3) · · · p(Nd)
p(2) p(2) p(3) · · · p(Nd)

p(3) p(3) p(3) · · ·
...

... · · · · · ·
. . .

...
p(Nd) · · · p(Nd)

⊗ Im.

By the performance index (66), comparisons with other ILC
designs can be conducted to verify the effectiveness of the
proposed algorithm under the nonuniform trial length problem,
which will be presented in the next section.

V. NUMERICAL SIMULATION VERIFICATIONS

To verify the effectiveness of the proposed algorithm, a
numerical model of mobile robot with two independent driving
wheels in [54] is employed. By controlling the driving voltages
ur and ul of each wheel, both linear velocity v and azimuth φ
of the mobile robot can be taken in control so that the mobile
robot can perform trajectory tracking tasks on a fixed two-
dimensional rectangular coordinate system.

A. Simulation Specification

Define the state variable of the mobile robot as x =
[v φ φ̇]T , the input variable as u = [ur ul]

T , and the
output variable as [v φ]T . Set the repeating operation period
as T = 2s and the sampling period as 0.05s, which yields
Nd = 40. Then, the discrete-time state-space parameters are

A =

 0.9975 0 0
0 1 0.0499
0 0 0.9955

 ,
B =

 0.0125 0.0125
−0.0021 −0.0042
−0.0833 −0.1666

 , C =

[
1 0 0
0 1 0

]
.

(67)

When a mobile robot is going to move along a specific
desired trajectory under control of ILC algorithms, some
output constraints usually arise from the obstacles on the
trajectory, which may lead to the problem with nonuniform
trial lengths. Typically, the running trajectory of the robot
deviates greatly from the expected one in the first few trials,
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and gets closer as the progress of the ILC process. Although
the obstacles are sometimes far from the desired trajectory,
the output is possible to be constrained, and thus the situation
that the trial length varies still happens.

In this simulation, the actual length Nk is set to satisfy
the discrete uniform distribution, which means Nk varies
randomly between an integer set. Let the integer set be
{33, 34, · · · , 40} and hence pi = 1/8. The proposed algorithm
can be used as long as the probability distribution of the actual
trial length can be known. Moreover, there may exist little
difference between initial azimuths of each trial due to the
way of initialization in practice, while the difference may be
bounded or have the same mathematical expectation. Therefore
in this simulation, set initial state as a random variable with
P
[
xk (0) = x1

]
= P

[
xk (0) = x2

]
= P

[
xk (0) = x3

]
=

1/3, where x1 = [0, 0.02, 0]
T , x2 = [0, 0, 0]

T and x3 =
[0,−0.02, 0]

T . This setting satisfies E {xk (0)} = xd (0) =
[0, 0, 0]

T . Set the initial input signal as u0 (t) = 0, 0 ≤ t ≤
Nd−1. Also, set k = 30 and N30 = Nd for better observation.

Furthermore, note that the mobile robot system (67) is a
linear coupling MIMO system and can be decoupled by[

ur
ul

]
=

[
1 −1
0 1

] [
u1

u2

]
. (68)

Then, the linear velocity v is controlled by u1 alone and
the azimuth φ is controlled by both u1 and u2. The control
procedure in this simulation is firstly to control the linear
velocity v and then let the u1 be a disturbance so that the
azimuth φ can be controlled by u2 alone. In this way, the
robustness of the proposed algorithm against disturbances can
also be verified. Set the desired trajectory of the linear velocity
and the azimuth as νd = 1 m/s and φd = πt rad respectively,
then the desired trajectory of the mobile robot is a round.

B. Performance of the Proposed Algorithm

When applying the proposed ILC algorithm, some other
parameters should be determined. Choose δ = 0.1 and initial
dual variable and slack variable such that λ0 = 2Is×1 and
ω0 = 2Is×1. Choose weighting matrices Q = 10Il·Nd

and
R = 0.001Il·Nd

, which also ensures the positive definite
of matrix H . When Assumption 1 holds, set constraints on
u1 being umax, umin = ±150V , ∆umax,∆umin = ±100V
and δumax, δumin = ±100V , and constraints on u2 be-
ing umax, umin = ±20V , ∆umax,∆umin = ±20V and
δumax, δumin = ±20V . Recall that the proposed algorithm
embeds the input constraints into the ILC process actively,
which means output range as well as performance can be
regulated independently. Since the real input constraints on
ur and ul can be transformed into the constraints on u1 and
u2 by (68), so we directly set constraints on u1 and u2 for
simplicity.

The performances of the proposed algorithm are shown in
Fig. 2 to Fig. 5. When Assumption 1 holds, the tracking
trajectories of the 5th, 7th and 30th trials are shown in Fig. 2.
The 5th and 7th trials do not run a complete trajectory because
of the setting of nonuniform trial lengths. Fig. 3 respectively
gives the tracking situation of both azimuth and linear velocity,
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and the corresponding tracking error under both ordinary and
logarithmic coordinates are shown in Fig. 4. Moreover, the
30th output cannot completely track the desired one since the
varying initial state. The variation of the initial azimuths is
given in Fig. 3. The input signals of the right and left wheels
for the 1st, 3rd and 30th trials are shown in Fig. 5, all of which
are under the input constraints. The cost functions (26) of
both linear velocity and azimuth are given in Fig. 6. The cost
functions converge to zero by applying the proposed algorithm,
which means the ILC systems are stable. Note that the cost
function of azimuth does not decreases monotonically, and this
is because the initial shift is set on the azimuth.

Furthermore, the efficacy of the proposed algorithm against
model uncertainty is verified. For the mobile robot, its weight
or other system parameters may change when operating a
specific task for many times. Therefore, the additive modeling
uncertainty ∆G is employed to further investigate the per-
formance of the proposed algorithm. Let ∆G vary randomly
between [−0.1, 0.1] and differ both in time and trial axes.
When setting bounded model uncertainty on azimuth, it is
shown in Fig. 7 that trajectory tracking task can be performed
with a few errors after a certain number of trials.

C. Compared with Conventional Counterparts

In practice, Assumption 1 may not always hold. Therefore,
it is important to verify the performance of the proposed
algorithm when Assumption 1 does not hold, especially when
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Fig. 8. Tracking error of linear velocity when Assumption 1 does not hold.

compared with other ILC designs. For simplicity, only the
performance of linear velocity is presented. Set constraints on
u1 being umax, umin = ±50V , ∆umax,∆umin = ±10V and
δumax, δumin = ±60V .

Choose the P-type ILC in [13], the norm optimal ILC in
[40] and the barrier method ILC design in [37] as comparisons.
These compared methods are all under the same nonuniform
trial length and input constraint settings. The learning gain
of P-type ILC is designed as Arimoto-like gain as presented
in [13], whose elements on the diagonal lines are valued by
0.85. The norm optimal ILC utilizes the feedforward imple-
mentation with the same weighting matrices Q = 10Il·Nd

and
R = 0.001Il·Nd

. The choices of main parameters in the barrier
method ILC design are as follows: the stopping criterion values
of both the barrier method and its inner loop are respectively
0.0001 and 0.00001. The initial values of both κ and µ are 1
and 20, respectively.

Then, the tracking error profiles of linear velocity under the
proposed algorithm as well as other three compared methods
are shown in Fig. 8. Though the convergence speed is a bit
slow at the first few trials, a lower convergence boundary as
well as little fluctuations can be obtained by the proposed
algorithm. Also, it is noted in Fig. 8 that the barrier method
ILC design may stop early, and this is because the input
signals of the barrier method must be strictly feasible. It is also
noted that the P-type ILC is obviously slower than other three
optimal ILC algorithms. Moreover, 2-norm of the variances
defined in (66) are presented in Fig. 9, which demonstrates
that the proposed algorithm can further suppress the effects of
varying trial lengths under input constraints. Model uncertainty
on linear velocity is also considered under input constraints in
Fig. 10. The proposed algorithm and the barrier method ILC
design have good robustness against model uncertainty, while
the norm optimal ILC has a poorer performance under this
circumstance.

VI. CONCLUSION AND FUTURE WORK

This paper proposed an optimal ILC algorithm for linear
time-invariant MIMO systems with nonuniform trial lengths
under input constraints. By reformulating the optimal ILC
problem with input constraints into a QP problem, the primal-
dual interior point method was employed to develop an ef-
ficient ILC algorithm for both nonuniform trial length and
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input constraint problem. Compared to the similar design,
i.e. the barrier method ILC design, the proposed algorithm is
easier to implement and needs no strict feasible input signal.
Moreover, the convergence properties of the proposed algo-
rithm were proved theoretically, and a corollary was achieved
when Assumption 1 does not hold. The effectiveness of the
proposed algorithm was verified on a mobile robot model in
comparison with other three conventional counterparts under
same circumstances.

The future work will include experimental verification to re-
search on the practical performance of the proposed algorithm.
Also, other practical situations for the proposed algorithm, e.g.
model uncertainty and non-repeatable disturbances, are going
to be further investigated in the future.
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