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Summary

This paper develops a novel framework for iterative learning control (ILC) design of
discrete-time systems with non-uniform trial lengths by using the method of alter-
nating projections. In contrast to existing results for the non-uniform trial length
problem, this paper uses the Hilbert space setting and hence the linear discrete-
time system dynamics with non-uniform trial lengths can be represented by multiple
affine subspaces (or linear varieties). Motivated by the successive projection design
between two closed convex sets, the considered ILC problem can be transformed into
alternating projections between multiple sets, then the Hilbert space setting is used to
establish key systems theoretic properties. Moreover, an optimal ILC design is devel-
oped for systems with non-uniform trial lengths, which is also extended to the case
of input constraints. A numerical case study is given to illustrate the applicability of
the new design.
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1 INTRODUCTION

Iterative learning control (ILC) applies to systems that repeatedly complete the same finite-duration task. An example is a
pick-and-place robot performing the following steps: i) collect the payload from a specified location, ii) transfer it over a finite
duration, iii) place the payload on a moving conveyor under synchronization, iv) return to the starting location and v) repeat
these steps as many times as possible. Let the finite duration be termed the trial length, and use the term trial to denote each
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execution. For discrete dynamics, the notation for the system output is yk(t), t ∈ [1, N], where both discrete time instant t and
trial number k are non-negative integers, andN <∞ denotes the trial length.
Once a trial is complete, all information generated, i.e., for t ∈ [1, N], is available to update the control signal for the next

trial. Let uk(t), t ∈ [0, N−1], k ≥ 0, denotes the control input on trial k. Then in the ILC setting, suppose that yd(t), t ∈ [1, N],
is a supplied reference trajectory, e.g., the desired path to be followed by the pick-and-place robot on each trial. In which case
the sequence of errors {ek}k≥0 can be formed, where on trial k, ek(t) = yd(t) − yk(t).
The ILC design problem can now be formulated as the construction of a control input sequence {uk}k≥0 that enforces con-

vergence from trial-o-trial (k variable) under an appropriate norm to either zero in the ideal case, or to within some acceptable
bounds. In ILC, the system input is regulated, and one form of the control law is to construct the control input for the subsequent
trial as the sum of that used on the previous trial and a correction based on previous trial information (in some cases, a current
trial feedback term is added). The critical feature of ILC is that all information from the prior trial is available to the control law.
Hence, for example, an ILC phase-lead law has the structure uk+1(t) = uk(t) + !ek(t + �), 0 ≤ � ≤ N − t, where the integer
� > 0 denotes the phase-lead action.
The phase-lead term in this last ILC law is implementable because it acts on the previous trial error. If � = 0, it can be

shown that an equivalent feedback control law exists and ILC has no added benefit. Since the mid-1980s, in particular, ILC
has remained an active research area, e.g., the first work on robotics1 and the survey papers.2,3 A strong feature of the research
is the number of design algorithms that have proceeded to a least experimental validation. Engineering applications include
multi-agent systems,4,5 printing systems6 and center-articulated vehicles.7 Also in the process industries, batch processing is
amenable to the application of an ILC law.8,9

In most of the ILC literature, the systems are required to track a desired reference trajectory of a fixed finite length and
specified a priori. An application area where variable or non-uniform trial lengths arise is in the use of ILC to regulate the level
of stimulation applied to patients undergoing robotic-assisted stroke rehabilitation. People who suffer a stroke lose functionality
down one side of their body. The recommended method of attempting to recover lost functionality is repeated attempts at a
task, e.g., reaching out to an object. However, patients cannot move the affected limb, and the quality of rehabilitation is poor.
Muscles can be made to move by applying electrical stimulation to the muscles involved, but regulating the applied stimulation is
necessary to achieve maximum effect. In previous work for the upper limb,10 it was established with supporting clinical trials,11

that ILC can be deployed to regulate the stimulation, where if the patient is improving with each attempt, the voluntary effort
should increase, and the applied stimulation decrease. Exactly this effect was detected in the clinical trials.
In the early stroke rehabilitation research, the reference trajectory is chosen based on a healthcare professional’s interpretation

of the patient’s current ability. It must not be too hard (loss of motivation often results) or too easy (no benefit from the session).
This early success led to other research on the use of ILC in healthcare, where the trial length is not fixed. One area is the use of
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ILC-based functional electrical stimulation to help stroke patients to recover from physiological foot motion. However, for safety
reasons or unpredictable voluntary effort by the patient, the stimulation signal must be applied until initial contact is detected
between the foot and the ground, which gives rise to an ILC problem of design for non-identical trial lengths.12 Another area
where non-identical, termed non-uniform from this point onwards, trial lengths occur, lies in the filling phase of the injection
molding.13 The filling phase should be instantly switched to the next phase once the pressure in the molding chamber increases
to a certain value, and thus non-uniform trial lengths arise. In response, research has been on ILC design for non-uniform trial
lengths.
Early approaches to this last problem include an iterative average operator for improving learning performance using the error

and input signals from previous trials.14 These signals may contain redundant information and affect up-to-date information. To
address this issue, more efficient designs were developed, including the searching-compensation mechanisms,15 the iteratively
moving average operator,16 and the domain alignment operator.17 A lifted framework, also termed intermittent ILC,18 was
developed for systems with randomly varying trial lengths using the P-type ILC law,19 for which stronger convergence results
were obtained in a stochastic system setting.
In contrast to the random process-based analysis for varying trial length examples, a deterministic convergence property has

been developed for tracking ILC design for systems with non-uniform trial lengths in the work of Meng et al.20 Also, a necessary
and sufficient condition for monotonic convergence is established with a simple structure ILC design.21 In the work of Jin,22 an
ILC design is developed using only previous trial information where convergence is analyzed using a modified composite energy
function. Moreover, a robust ILC scheme combined with adaptive design techniques is developed for non-uniform trial length
systems with nonparametric uncertainties.23 Also, an adaptive ILC design is developed for the case under a state alignment
condition with varying trial lengths. The bounded convergence property is guaranteed using a barrier composite energy function
approach.24

A critical question in ILC performance is the speed of the error convergence and how to increase or accelerate it if required.
The above designs focus on improving learning efficiency, which cannot increase the convergence speed. In the work of Ketelhut
et al.,25 a modification of the norm optimal ILC design for application to non-uniform trial lengths for application to ventricular
assist devices. However, this work has no theoretical proof of the feasibility of optimal ILC applied to the non-uniform trial
lengths. Also, an intermittent optimal learning control scheme has been developed,26 which aims to achieve fast convergence
speed by minimizing a performance index.
Convergence analysis of ILC designs for the non-uniform trial length problem is also a significant issue. Previous

approaches to this problem include contraction mapping-based method14,16,27 and the Lyapunov-based composite energy func-
tion method.22,23,24 This paper develops a new design and analysis setting for discrete-time systems with non-uniform trial
lengths. In particular, a Hilbert space setting for analysis is used. The Hilbert space setting can simplify the design and analysis
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of complex ILC analysis using operator theory. See the work of Owens et al.28 for a comprehensive treatment of the background
on the use of Hilbert spaces in ILC analysis and design. The alternating projection method for ILC analysis and design which
is also termed successive projection,29,30 has been developed for constant trial length systems and extended to the non-uniform
trial length case by utilizing the mathematical expectation for only two projecting sets.31 This paper extends the alternating pro-
jection ILC framework to the non-uniform trial length case by introducing more than two sets, i.e., a finite number of sets, to
obtain stronger convergence results in a deterministic setting. Moreover, this paper extends the method of alternating projections
in a Hilbert space.
This paper develops an optimal ILC design using the modified alternating projection framework for discrete-time multiple-

input multiple-output (MIMO) linear systems with non-uniform trial lengths. Multiple affine subspaces (or linear varieties)
represent the discrete-time system dynamics with non-uniform trial lengths. Then, the result of alternating projections between
multiple sets can bemodified for the optimal ILC design and convergence analysis. In this case, causal implementation is allowed
using the norm optimal setting with appropriate modifications. Furthermore, the ILC design is extended to the case of non-
uniform trial lengths where input constraints arise or must be imposed for applications-specific reasons. In all cases, the error
convergence properties are analyzed. Finally, a numerical case study based on a model obtained from a coarse-fine stage is given
to demonstrate the applicability of the new design. The significant novel contributions of this paper are:

• An ILC design framework is developed for discrete-time systems with non-uniform trial lengths using alternating
projections between a finite number of sets.

• A causal feedback plus feedforward design for discrete-time systems with non-uniform trial lengths is developed with a
strict convergence proof.

• The alternating projection framework is extended to the design for non-uniform trial length examples with input
constraints.

The structure of this paper is organized as below. The problem formulation is first addressed in Section 2. Section 3 develops
an ILC design for non-uniform trial lengths using alternating projections, and a causal feedback plus feedforward structure is
derived for practical implementation. Section 4 gives the new results for input constraints. A numerical case study is provided
in Section 5, and the conclusions are in Section 6.
Throughout this paper, ℕ denotes the set of natural number; ℝn and ℝn×m denote the sets of n-dimensional real vectors and

n × m real matrices, respectively; lm2 [a, b] denotes the space of ℝm valued Lebesgue square-summable sequences defined on
an interval [a, b]; The superscripts T and ⊥ respectively denote the transpose and the orthogonal complement operations; x⊥y
represents that x and y are orthogonal; 0 denotes zero vector with compatible dimensions; PM (x) denotes the projection of x onto
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the setM in a Hilbert space;⋂ denotes the intersection of sets; ⟨⋅⟩ and |⋅| respectively denote the inner product and determinant,
and X × Y denotes the Cartesian product of two spaces X and Y . Additional notation will be introduced when required.

2 PROBLEM FORMULATION

Consider a linear time-invariant discrete-time MIMO system with non-uniform trial lengths described in the ILC setting by the
state-space model

⎧

⎪

⎨

⎪

⎩

xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1)

where k ∈ ℕ and t ∈ [0, Nk] respectively denote the trial number and time index. Nk is a random variable that represents the
actual trial length of trial k. xk(t) ∈ ℝn, uk(t) ∈ ℝl and yk(t) ∈ ℝm denote the state, input and output vectors, respectively. It
is assumed that |CB| ≠ 0 and therefore the relative degree is equal to one. Without loss of generality, it is also assumed that
xk(0) = x0 for all trials, i.e., same state initial vector on each trial.
One method for ILC analysis and design for the systems considered is to use the lifted model representation, where the values

of a variable are represented by assembling them in order as the entries in a vector, and this vector has a finite dimension due to
the finite trial length. In this approach, the error updating from trial-to-trial is governed by a standard difference equation and
analyzed by standard discrete linear systems theory. See, e.g., the survey papers,2,3 for the background on this approach to ILC
design.
The non-uniform trial length case does not follow as a direct generalization of lifted model. Therefore, the actual trial length

Nk varies within the set
{

Nm, Nm + 1,… , N
}, whereNm andN respectively denote the minimum and maximum trial lengths

that occur in a particular application, for which there are J = N −Nm + 1 possible trial lengths. In this case, the lifted model
with the same trial lengthN can be employed, i.e.

yk = Guk + dk, (2)

where G and dk represent the system model and the effect of the initial conditions respectively, i.e.

G =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

CB 0 0 ⋯ 0

CAB CB 0 ⋯ 0

CA2B CAB CB ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

CAN−1B CAN−2B CAN−3B ⋯ CB

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)
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dk =
[

(CA)T
(

CA2
)T

⋯
(

CAN
)T

]T

xk(0), (4)

and

uk =
[

uTk (0), u
T
k (1),… , uTk (N − 1)

]T , (5)
yk =

[

yTk (1), y
T
k (2),… , yTk (N)

]T . (6)

This paper uses a Hilbert space setting. Let ll2 [0, N − 1] and lm2 [1, N] denote the input and output spaces respectively, with
inner products and associated induced norms

⟨u, v⟩R =
N−1
∑

i=0
uT (i)Rv (i), ‖u‖R =

√

⟨u, u⟩R, (7)

⟨y, e⟩Q =
N
∑

i=1
yT (i)Qe (i), ‖y‖Q =

√

⟨y, y⟩Q, (8)

where u, v ∈ ll2 [0, N − 1] and y, e ∈ lm2 [1, N]. R ∈ ℝl×l and Q ∈ ℝm×m are symmetric positive definite weighting matrices.
In the case when Q and R are chosen as a positive scalar times the compatibly dimensioned identity matrices, their condition
numbers will always be 1. Consequently, there is no influence on the stability of control input when these weighting matrices are
adjusted to obtain candidate optimal ILC designs to be assessed for their influence on performance. Define yd(t) as the desired
output or reference trajectory for t ∈ [1, N] in the lifted model setting, i.e.

yd =
[

yTd (1), y
T
d (2),… , yTd (N)

]T . (9)

One problem for ILC design in the non-uniform trial length case is that the actual output values in yk on trial k are not known
for t ∈ [Nk + 1, N]. The reference trajectory is, however, known and hence it is possible to set

yk(t) = yd(t), t ∈ [Nk + 1, N]. (10)

In this way, learning efficiency of the lifted model for systems with non-uniform trial lengths along the trial can be maintained
when using the tracking error to update the input signal for the next trial.
To describe the tracking error of systems with non-uniform trial lengths, a trial-varying matrix is introduced as

Fk =

⎡

⎢

⎢

⎢

⎣

INk
⊗ Im 0

0 0⊗ Im

⎤

⎥

⎥

⎥

⎦

, (11)

where Il denotes the identity matrix with dimensions l × l, and ⊗ denotes the Kronecker product. Then, the tracking error can
be written as

ek = Fk
(

yd − yk
)

, (12)
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even though the output at t ∈ [Nk + 1, N] is unknown. In this sense, the error vectors for different trials belong to different
subspaces, which depends on the trial number.

Remark 1. These subspaces that the error vectors belong to are actually subsets of each other, and regarding them as independent
subspace one by one is the basis for the new ILC design developed in the next section.

The ILC design objective for problem with non-uniform trial lengths is stated as follows.

Definition 1. The ILC problem is to design an update law

uk+1 = f (uk, uk−1,…, ek, ek−1,…), (13)

to update the input signal for current trial utilizing both trial input and tracking errors that have been already obtained, such that
the modified tracking error (12) converges to zero in norm as k→∞, i.e.

lim
k→∞

‖

‖

ek‖‖ = 0. (14)

Note that in ILC it is possible to use information from any previous trials to update the control input to be applied on the next
trial. However in this work, only the most common case is considered, i.e., only information from the previous trial is used,
which has evident advantages in terms of applications.

3 ILC DESIGN USING ALTERNATING PROJECTIONS

In this section, an ILC design for the systems considered is developed by employing alternating projections.

3.1 Alternating Projections Interpretation

In the case when missing information of the output on a trial is replaced by the corresponding entries in the reference trajectory,
the tracking errors for t ∈ [Nk + 1, N] are set as zero. Then, the tracking errors of different trials belong to different subspaces
in Hilbert spaces, and there are J subspaces.
In this sense, the ILC design problem formulated in Definition 1 is equivalent to iteratively finding a point in the intersection

of the following multiple closed affine subspaces

Mj =
{

(e, u) ∈ H ∶ e = Fj(yd − y), y = Gu + d
}

, (15)
MJ+1 = {(e, u) ∈ H ∶ e = 0} , (16)
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where Mj ∈
{

M1,M2,… ,MJ
} and MJ+1 respectively represent system dynamics and the tacking objective, and d ∈

lm2 [1, N]. The matrix Fj decides which affine subspaceMj lies in
{

M1,M2,… ,MJ
}, and is defined as

Fj =

⎡

⎢

⎢

⎢

⎣

INj
⊗ Im 0

0 0(N−Nj ) ⊗ Im

⎤

⎥

⎥

⎥

⎦

, (17)

whereNj = N − j + 1, for j ∈ {1, 2,… , J}. In addition, the Hilbert spaceH is defined as

H = lm2 [1, N] × l
l
2 [0, N − 1] , (18)

with the inner product and associated induced norm

⟨(e, u) , (y, v)⟩{Q,R} =
N
∑

i=1
eT (i)Qy (i) +

N−1
∑

i=0
uT (i)Rv (i), (19)

‖(e, u)‖{Q,R} =
√

⟨(e, u) , (e, u)⟩{Q,R}. (20)

The following assumption is required.

Assumption 1. The multiple affine subspacesMj andMJ+1 given by (15) and (16) have an intersection region in the Hilbert
spaceH , i.e.M ∩MJ+1 ≠ ∅, whereM =

⋂J
1 Mj .

Assumption 1 guarantees the control objective is achievable, and hence the ILC problem has a solution. Also, due to the
existence of the intersection region, there must exist a point (0, u∗) ∈M ∩MJ+1.
Different from successive projections used for the constant trial length case,29,30 the method of alternating projections used

in this paper considers more than two closed sets in the iterative process for the non-uniform trial length case. Therefore, there
may be multiple projection orders, hence the notation {

jk
}

k≥0 is introduced as a sequence taking values in {1, 2,… , J}, and
define a sequence {zk

}

k≥0 using
zk+1 = PMjk+1

(

zk
)

, k ≥ 0, (21)

by choosing an arbitrary initial point z0 ∈ H .

Definition 2. The sequence s = {

jk
}

k≥0 taking i infinitely many times is represented by

� (s, i) = sup
k

[

Δk+1 (i) − Δk (i)
]

<∞, (22)

where {Δk (i) ∈ ℕ
}

k≥0 is an increasing sequence such that jΔk(i) = i with Δ0 (i) = 0.

Taking i infinitely many times requires that the difference in the projection index between the appearance of i at one time and
the next is bounded.With Definition 2, the following lemma is required as a basis for the solution of the ILC problem considered.
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Lemma 1. Suppose thatMj , for j ∈ {1, 2,… , J}, are closed subspaces in a Hilbert space. If the sequence s = {

jk
}

k≥0 takes
every value in {1, 2,… , J} infinitely many times and there exists a constant S, which is only associated with the sequence s,
such that

‖

‖

zn − zm‖‖
2 ≤ S

m−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2, n > m ≥ 1, (23)

then {zk
}

k≥0 converges in norm to the orthogonal projection of z0 ontoM =
⋂J
1 Mj .

Proof. See Appendix A, which, in turn, draws on the original result.32

Lemma 1 requires that the sequence s = {

jk
}

k≥0 takes every value in i ∈ {1, 2,… , J} infinitely many times and hence the
possibility of converging by choosing an appropriate sequence {jk

}

k≥0 taking values in {1, 2,… , J}. However, this is a very
strict condition for systems with non-uniform trial lengths, because it is not ensured in practice that actual trial length can take
every existent length infinitely many times. Therefore, another assumption is made to relax this condition, while the sequence
{

zk
}

k≥0 still converges.

Assumption 2. M1 appears infinitely many times in the process of alternating projections between (15) and (16), i.e.

� (s, 1) = sup
k

[

Δk+1 (1) − Δk (1)
]

<∞. (24)

Note thatM1 represents the system dynamics with Nk = N . Therefore, Assumption 2 demands that the case, whose actual
length is the desired one, appears infinitely many times and thus the interval between any two sequential trials with desired
length is bounded.

Remark 2. This assumption coincides with the persistent full-learning property20 where the actual trial can extend to the desired
length at least once between any fixed finite interval of successive trials. Similarly, the actual number of � (s, 1) has no influence
on the convergence result of ILC design because it is only the existence of � (s, 1) that matters. Nonetheless, the smaller this
value, the better the learning performance.

Different from Lemma 1, the convergence analysis of alternating projections between (15) and (16) should further consider
the affine subspaces of Hilbert space H , namely, the original point of the Hilbert space H does not naturally belong to the
designed affine subspaces. Therefore, a property under a designed projection order is firstly proved to establish the convergence.
Denote z∗ as a point in the intersection region in Assumption 1, i.e., z∗ = (0, u∗) ∈ M ∩MJ+1, then the following theorem is
established.

Theorem 1. If the projection order satisfies

Mjk =

⎧

⎪

⎨

⎪

⎩

Mj ∈
{

M1,M2,… ,MJ
}

, k is odd,

MJ+1, k is even,
(25)
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then for any n > m ≥ 1, there exists
⟨zm − zn, z∗ − zn⟩ ≤ 0. (26)

Proof. Using Lemma 2 given in Appendix A, the orthogonal projection operator is idempotent and self-adjoint, and therefore
⟨

z − PMj
(z), PMj

(z) − z∗
⟩

=
⟨

z − z∗, PMj
(z) − z∗

⟩

+
⟨

z∗ − PMj
(z), PMj

(z) − z∗
⟩

=
⟨

z, PMj
(z)

⟩

− ⟨z, z∗⟩ +
⟨

z∗, PMj
(z)

⟩

−
⟨

PMj
(z), PMj

(z)
⟩

=
⟨

z∗, PMj
(z)

⟩

− ⟨z, z∗⟩ =
⟨

PMj
(z∗) , z

⟩

− ⟨z, z∗⟩ = 0, (27)

which yields

‖

‖

‖

z − PMj
(z)‖‖

‖

2
= ‖z − z∗‖2 − ‖

‖

‖

PMj
(z) − z∗‖‖

‖

2
− 2

⟨

z − PMj
(z) , PMj

(z) − z∗
⟩

= ‖z − z∗‖2 − ‖

‖

‖

PMj
(z) − z∗‖‖

‖

2
. (28)

Reformulating (28) by adding the projection index k gives

‖

‖

zk − z∗‖‖
2 − ‖

‖

zk+1 − z∗‖‖
2 = ‖

‖

zk − zk+1‖‖
2, (29)

then
‖

‖

zm − z∗‖‖
2 − ‖

‖

zn − z∗‖‖
2 =

n−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2, (30)

for n > m ≥ 1. When m is odd and n is even, introduce a scalar � to establish the relationship between zm and zn. Then

zn = zm−1 + �
(

zm+1 − zm−1
)

, n > m ≥ 2. (31)

Note that ‖
‖

zk − z∗‖‖
2 monotonically decreases as trial k increases by (29), so zn ∈MJ+1 should be a point on the line segment

with endpoints zm+1 and z∗ in the Hilbert spaceH , where zm+1 ∈MJ+1. Then,

‖

‖

zn − zm−1‖‖
2 = �2‖

‖

zm+1 − zm−1‖‖
2 ≥ ‖

‖

zm+1 − zm−1‖‖
2, (32)

which yields � ≥ 1. Conversely, when ‖
‖

zn − zm−1‖‖
2 converges to 0, it follows that

⟨zn − zm, zm−1 − zm⟩ = 0, (33)

and substituting for zn using (31) yields

� = −
‖

‖

zm − zm−1‖‖
2

⟨

zm+1 − zm−1, zm−1 − zm
⟩ =

‖

‖

zm − zm−1‖‖
2

⟨

zm+1 − zm−1, zm − zm+1 + zm+1 − zm−1
⟩ =

‖

‖

zm − zm−1‖‖
2

‖

‖

zm+1 − zm−1‖‖
2
, (34)

since ⟨zm+1 − zm−1, zm − zm+1
⟩

= 0, which is established by similar steps to the proof of (27). Then, it follows that

1 ≤ � ≤
‖

‖

zm − zm−1‖‖
2

‖

‖

zm+1 − zm−1‖‖
2
. (35)
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Moreover, reformulating ⟨zm − zn, z∗ − zn⟩ yields

⟨zm − zn, z∗ − zn⟩ =
⟨(

zm − zm+1
)

+
(

zm+1 − zn
)

, z∗ − zm−1 − �
(

zm+1 − zm−1
)⟩

=
⟨

zm − zm+1, (1 − �)
(

z∗ − zm−1
)⟩

+
⟨

zm − zm+1, �
(

z∗ − zm+1
)⟩

+
⟨

(1 − �)
(

zm+1 − zm−1
)

,
(

z∗ − zm−1
)

− �
(

zm+1 − zm−1
)⟩

=
⟨

zm − zm−1 + zm−1, (1 − �)
(

z∗ − zm−1
)⟩

− (1 − �)
⟨

zm+1, z
∗ − zm−1

⟩

+ (1 − �)
⟨

zm+1, z
∗ − zm−1

⟩

− (1 − �) ⟨zm−1, z∗ − zm−1⟩ − (1 − �) � ‖‖zm+1 − zm−1‖‖
2

= (1 − �)
(

⟨zm − zm−1, z∗ − zm−1⟩ − � ‖‖zm+1 − zm−1‖‖
2
)

,

(36)

since ⟨zm − zm+1, zm+1 − z∗
⟩

= 0 and ⟨zm − zm−1, zm − z∗⟩ = 0.
Except for � = 1, substituting for � using ‖

zm−zm−1‖
2

‖
zm+1−zm−1‖

2 also yields ⟨zm − zn, z∗ − zn⟩ = 0 since, in (36),

⟨zm − zm−1, z∗ − zm−1⟩ − � ‖‖zm+1 − zm−1‖‖
2 = ⟨zm − zm−1, z∗ − zm−1⟩ − ⟨zm − zm−1, zm − zm−1⟩

= ⟨zm − zm−1, z∗ − zm⟩ = 0. (37)

Note that (36) is a quadratic function with respect to � with a positive quadratic coefficient, therefore ⟨zm − zn, z∗ − zn⟩ ≤ 0 by
(35) for n > m ≥ 2. For n > m = 1, using z2, z1 and P −1MJ+1

(

z1
) yields the same result, where P −1MJ+1

(

z1
), belonging toMJ+1,

represents the original orthogonal projection point of z1.
When m is even and n is odd, by employing two auxiliary points, i.e., PMjn

(

zm
) and P −1Mjn

(

zm
), the same result for the case

when n is even and m is odd can be established. When both m and n are odd or even, (26) holds since ‖
‖

zk − z∗‖‖
2 monotonically

decreases as the projection index k increases, even though the two affine subspaces may not be same when both m and n are
odd.

Given Theorem 1, the following convergence result can be established.

Theorem 2. The sequence {zk
}

k≥0 converges in norm to the orthogonal projection of z0 ontoM ∩MJ+1 under the projection
order (25).

Proof. It follows from the result in (26) in Theorem 1 that

‖

‖

zn − zm‖‖
2 = ‖

‖

zm − z∗‖‖
2 − ‖

‖

zn − z∗‖‖
2 + 2 ⟨zm − zn, z∗ − zn⟩ ≤ ‖

‖

zm − z∗‖‖
2 − ‖

‖

zn − z∗‖‖
2, n > m ≥ 1, (38)

and when combined with (30), it follows that

‖

‖

zn − zm‖‖
2 ≤

n−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2, n > m ≥ 1. (39)
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Recall that (39) is the condition ensuring that the sequence {zk
}

k≥0 converges in norm with S = 1 by Lemma 1, while the
difference lies in that allMj , j ∈ {1, 2,… , J}, that are affine subspaces in Theorem 2.
Since ‖

‖

zk − z∗‖‖
2 monotonically decreases as k increases and bounded below by 0 according to (29), it follows that there

exists a constant  > 0 such that lim
k→∞

‖

‖

zk − z∗‖‖
2 =  . Moreover, given a constant � > 0, there exists k ∈ ℕ such that

0 ≤ ‖

‖

zm − z∗‖‖
2 −  < �∕2 whenever m ≥ k and it also works when it comes to n ≥ k. Then, it follows from (38) that

‖

‖

zn − zm‖‖
2 ≤ ‖

‖

zm − z∗‖‖
2 −  +  − ‖

‖

zn − z∗‖‖
2 < �∕2 + �∕2 = �, (40)

and hence {zk
}

k≥0 converges in norm by the completeness property of Hilbert spaces. For ease of notation, the convergent point
is denoted by z∞.
Note thatM1 appears infinitely many times as stated in Assumption 2, so there is a convergent sub-sequence {zΔk(1)

}

k≥0 such
that each zΔk(1) ∈M1. Therefore, there exists

⟨

zΔk(1), z
′⟩ = 0 for every point z′ ∈M⊥

1 , which gives rise to
⟨

z∞, z
′⟩ =

⟨

lim
k→∞

zΔk(J+1), z
′
⟩

= lim
k→∞

⟨

zΔk(J+1), z
′⟩ = 0, (41)

and hence z∞ ∈M1. SinceMJ+1 also appears infinitely many times under the designed projection order (25) with � (s, J + 1) =
2, it follows that z∞ ∈MJ+1. Then, z∞ = (0, u∞) ∈M1 ∩MJ+1, where u∞ is the convergent control input and

e = 0 = F1
(

yd − Gu∞ − d
)

=
(

yd − Gu∞ − d
)

, (42)

since F1 = IN by (17). In the case ofMj , it follows that

e = Fj
(

yd − Gu∞ − d
)

= 0, (43)

for each j ∈ {2, 3,… , J}. Then, z∞ = (0, u∞) ∈Mj for every j ∈ {2, 3,… , J} and hence z∞ ∈M∩MJ+1 sinceM =
⋂J
1 Mj .

Furthermore, considering the following subspaces to project on in the Hilbert spaceH yields zk −PMjk+1

(

zk
)

∈M⊥
jk+1

. Note
also that z∗ ∈M ∩MJ+1 and thus z∗ ∈Mjk+1 , and then

⟨

zk − zk+1, z∗
⟩

=
⟨

zk − PMjk+1

(

zk
)

, z∗
⟩

= 0, (44)

which yields
⟨z0 − z∞, z∗⟩ = lim

k→∞

⟨

z0 − zk+1, z∗
⟩

= lim
k→∞

(⟨z0 − z1, z∗⟩ +⋯ +
⟨

zk − zk+1, z∗
⟩

) = 0. (45)

Hence, z0 − z∞ ∈
(

M ∩MJ+1
)⊥. By the projection theorem in Hilbert spaces, z∞ is the orthogonal projection of z0 onto

M ∩MJ+1 by z0 = z∞ +
(

z0 − z∞
) and the proof is complete.
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The difference between z∗ and z∞ is that z∗ can be any point that exists inM ∩MJ+1 according to Assumption 1, while z∞
is the convergent point of the sequence {zk

}

k≥0 under the designed projection order (25). Also, z∞ belongs toM ∩MJ+1 by
Theorem 2. Next, the result of Theorem 2 is used to obtain an ILC law design.

3.2 Optimal ILC Design and Convergence Analysis

To design an optimal ILC update law, a cost function should be formulated for each trial to reduce the tracking error or other
targets. According to the alternating projection interpretation, the distance ‖

‖

zk+1 − zk‖‖ in Hilbert spaceH is going to be reduced.
Therefore, according to the inner product and associated induced norm (19) and (20), the cost function can be taken as

J
(

uk+1
)

= ‖

‖

zk+1 − zk‖‖
2 = ‖

‖

ek+1‖‖
2
Q + ‖

‖

uk+1 − uk‖‖
2
R . (46)

Moreover, the norm optimal ILC update law33 can be employed to handle (46), i.e.

uk+1 = uk + G∗ek+1, (47)

where G∗ denotes the adjoint operator of G in Hilbert space and I = IN ⊗ Im.

Remark 3. Due to the property of adjoint operator, the form of the norm optimal ILC update law (47) is not causal, and therefore
is not implementable. It will be shown later in this paper that (47) can be reformulated to enable implementation as a simple
feedforward or causal feedback plus the feedforward structure. In particular, note that ek+1 is associated with Fk+1, i.e., the actual
length of current trial as defined in (11), which is unknown in advance when calculating uk+1. Also using the calculation along
the time, the causality of varying trial lengths can be ensured without lossing useful information from historical data.

The next result establishes that the ILC update law (47) solves the problem given in Definition 1.

Proposition 1. The input sequence {uk
}

k≥0 generated by update law (47) iteratively solves the ILC problem with non-uniform
trial lengths given in Definition 1.

Proof. With the multiple affine subspaces defined in (15) and (16), the ILC problem with non-uniform trial lengths is
transformed into the projection problem onto Mjk , where the alternating sequence {

Mjk

}

k≥1 takes values in the order of
{

Mj ,MJ+1,Mj ,MJ+1,…
} under (25). In this sense, let z̃ = (ẽ, ũ) ∈Mj where j ∈ {1, 2,… , J} and z = (0, u) ∈MJ+1. Then,

for j ∈ {1, 2,… , J},

PMj
(z) = argmin

ẑ∈Mj

‖ẑ − z‖2H = argmin
(ê,û)∈Mj

‖(ê, û) − (0, u)‖2{Q,R}

= argmin
(ê,û)∈Mj

{

‖ê − 0‖2Q + ‖û − u‖2R
}

= argmin
û

{

‖ê‖2Q + ‖û − u‖2R
}

,
(48)



14 Zhuang ET AL

which is an optimization problem solved by update law (47). Similarly,

PMJ+1
(z̃) = argmin

ẑ∈MJ+1

‖ẑ − z̃‖2H = argmin
(0,û)∈MJ+1

‖(0, û) − (ẽ, ũ)‖2{Q,R} = argmin
(0,û)∈MJ+1

{

‖0 − ẽ‖2Q + ‖û − ũ‖2R
}

, (49)

whose solution is û = ũ when (0, û) ∈MJ+1. In this sense, using (47) to solve (48) and (49) repeatedly means alternating
projections under the designed order (25). Therefore, the resulting sequence {uk

}

k≥0 generated by update law (47) solves the
ILC problem in Definition 1.

The convergence of the new design will now be analyzed using the alternating projections of Theorem 2.
According to Assumption 1, there exists a point z∗ belonging to the intersection region of the multiple subspaces Mj and

MJ+1, which means systems with non-uniform trial lengths can eventually operate with zero tracking error. This convergence
property is established by the following theorem.

Theorem 3. Given system (1) with initial input u0, if Assumption 1 holds, application of the optimal ILC update law (47) results
in

lim
k→∞

uk = u∞, lim
k→∞

‖

‖

ek‖‖ = 0. (50)

Proof. Since the sequence {zk
}

k≥0 converges in norm to z∞ =
(

0, u∞
) under the projection order of (25) by Theorem 2, the

distance between each two projections converges to 0. Hence, given the cost function (46), it follows that

lim
k→∞

{

‖

‖

0 − ek‖‖
2
Q + ‖

‖

u∞ − uk‖‖
2
R

}

= 0, (51)

which establishes (50) by Assumption 1.

Remark 4. Although the norm optimal ILC update law (47) is applied, monotonic convergence property of the modified tracking
error in norm cannot be achieved in general because the actual lengths are not identical. However, when k is even, there exists
⟨

zk − zk+2, zk+2 − zk+1
⟩

= 0, which can be proved in a similar manner to (27), and it follows that

‖

‖

zk − zk+1‖‖
2 = ‖

‖

zk − zk+2‖‖
2 + ‖

‖

zk+2 − zk+1‖‖
2 + 2

⟨

zk − zk+2, zk+2 − zk+1
⟩

≥ ‖

‖

zk+1 − zk+2‖‖
2, (52)

which shows that monotonic performance under (25) in Theorem 2 is possible. When k is odd, however, (52) does not always
hold because both zk and zk+2 are not always located in the same affine subspace defined in (15), i.e., each two actual trial
lengths of the ILC process are not always identical.

In Theorem 3, the convergence of the ILC design for systems with non-uniform trial lengths is proved under the alternating
projection framework. Next, it is shown that the ILC law can be reformulated to allow implementation.
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3.3 Causal Feedback Plus Feedforward Implementation

The following steps compose a causal implementation procedure for the ILC law developed in this paper.

Step 1 Input the system dynamics (1), initial input u0, positive definite matricesQ and R and stopping criterion value � > 0, and
set k = 0;

Step 2 Calculate the state feedback matrices K (t) for t ∈ [0, N − 1] using the Riccati equation

K (t) = ATK (t + 1)
[

In + BR−1BTK(t + 1)
]−1A + CTQC, (53)

with the boundary condition K (N) = 0;

Step 3 Set k = k + 1, then calculate feedforward terms �k+1 (t) for t ∈ [0, N − 1] by the difference equation

�k+1 (t) =
[

In +K (t)BR−1BT
]−1 [AT �k+1 (t + 1) + CTQek(t + 1)

]

, (54)

with the boundary condition �k+1 (N) = 0;

Step 4 Calculate the control input uk+1(t) until t = Nk − 1 by

uk+1 (t) = uk (t) + R−1BT pk+1 (t) , (55)

with
pk+1(t) = −K(t)

[

In + BR−1BTK(t)
]−1 A ×

[

xk+1 (t) − xk (t)
]

+ �k+1 (t) , (56)

where pk+1 (t) is a defined costate vector;

Step 5 Set uk+1 (t) = uk (t) for t ∈
[

Nk, N − 1
];

Step 6 If ‖
‖

ek+1‖‖ < �, finish the procedure, otherwise return to Step 3.

Remark 5. Steps 1-6 above compose a practical implementation for systems with non-uniform trial lengths, where there exists an
extended setting on the input signal when the current trial is ended prematurely. In this case, this procedure can handle systems
with non-uniform trial lengths for some complex situations in practice by adjusting to practical requirements. If no available
error information is involved in update, set the input of current trial k + 1 to be unchanged for safety or other reasons when
t ∈

[

Nk+1, N − 1
], i.e., uk+1 (t) = uk (t).

Remark 6. In practical applications, the stability of control input will be influenced by the accuracy of system dynamic matrices
during the computations of implementation procedure (53)-(56). Introduce an uncertainty operator Δ ∶ lm2 [1, N]→ lm2 [1, N]

to denote the uncertainty model Ĝ = (I + Δ)G. Then, the measured output trajectory ŷk = Ĝuk will be different from the
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numerically computed outputs yk = Guk where accurate system matrices are assumed to be acquired. Then, it follows that

uk+1 = uk + G∗êk+1 = uk + G∗
(

I + ĜG∗
)−1

êk

= uk + G∗
(

I + ĜG∗
)−1

Fk
(

yd − Ĝuk
) (57)

=
[

I − FkG∗
(

I + ĜG∗
)−1

Ĝ
]

uk + FkG∗(I + GG∗)
−1yd .

If the uncertainty operator Δ varies within a certain range, which makes ‖‖
‖

I − FkG∗
(

I + ĜG∗
)−1

Ĝ‖‖
‖

< 1 satisfied, then we can
derive that the control input converges within a boundary, i.e., the stability of the control input can be ensured.

The calculations of both the state feedback matrix K(t) and the feedforward term �k+1(t), respectively in (53) and (54), do
not violate the law of causality because they will be computed in reverse chronological order. In the causal implementation
procedure Steps 1-6, the boundary conditions K(N) = 0 and �k+1(N) = 0 are given firstly, then K(N − 1) and �k+1(N − 1) are
computed and son on recursively. The reverse chronological recursion is employed because the Riccati equation forms a causal
feedback plus feedforward implementation for the non-causal lifted ILC update law (47). The next result formally establishes
this implementation procedure and its proof is given in Appendix B for brevity.

Proposition 2. The norm optimal ILC update law (47) for systems with non-uniform trial lengths can be implemented using
the feedback plus feedforward structure given as Steps 1-6.

Proof. See Appendix B.

4 EXTENSION TO INPUT CONSTRAINTS

When considering constraints on the input signal,MJ+1 may not be a closed subspace but still a closed set. Furthermore, the
constrained set is usually convex in practice. Therefore, the convex constraint on the input signal can be embedded into the
tracking objective, i.e.

Mj =
{

(e, u) ∈ H ∶ e = Fj
(

yd − y
)

, y = Gu + d
} (58)

MJ+1 = {(e, u) ∈ H ∶ e = 0, u ∈ Ω} , (59)

where Ω is a closed convex set that represents the input constraints and alsoMj ∈
{

M1,M2,… ,MJ
}.

Remark 7. The reason why the input constraints are embedded intoMJ+1, instead ofMj for j ∈ {1, 2,… , J}, is that PMJ+1
(z̃) is

equivalent to PΩ (ũ) by (49) when finding the projection point onMJ+1 with input constraints. Conversely, if the input constraints
are embedded into Mj , a complex constrained optimization problem has to be solved, see the original work29 for a detailed
discussion of this case.
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Note that when applying alternating projections between (58) and (59), the projection sequence can still be shown to converge
in norm if Assumption 1 still holds. However, the convergent point may not be the orthogonal projection of initial point onto the
intersection region. Although faster convergence speed occurs under convergence to the projection of initial point, this property
is still ensured when the convergent point belongs to the region. In this case, a theorem for ILC design problemwith non-uniform
trial lengths under input constraints is established next.

Theorem 4. IfMJ+1 is a closed convex set and Assumption 1 holds, the sequence {zk
}

k≥0 converges in norm to a point that
belongs toM ∩MJ+1 under the projection order of (25).

Proof. Due to the convexity ofMJ+1, there exists
⟨

zk − PMJ+1

(

zk
)

, PMJ+1

(

zk
)

− z
⟩

≥ 0, (60)

for any z ∈MJ+1. In particular, when k is even, there exists ⟨zk+1 − zk+2, zk+2 − zk
⟩

≥ 0, and hence

‖

‖

zk+1 − zk‖‖
2 = ‖

‖

zk+1 − zk+2‖‖
2 + ‖

‖

zk+2 − zk‖‖
2 + 2

⟨

zk+1 − zk+2, zk+2 − zk
⟩

≥ ‖

‖

zk+1 − zk+2‖‖
2. (61)

When k is odd, (61) may not always hold because the affine subspaces under the projection order (25) arise, i.e.,Mj , instead of
just convex sets. In a similar manner to (27), it can be shown that

⟨

zk − PMj

(

zk
)

, PMj

(

zk
)

− z′
⟩

= 0, (62)

for any z′ ∈ Mj , where j ∈ {1, 2,… , J}. Therefore, for z∗ ∈ M ∩MJ+1 and all k, there exists ⟨zk − zk+1, zk+1 − z∗
⟩

≥ 0,
which yields

‖

‖

zk − z∗‖‖
2 = ‖

‖

zk − zk+1‖‖
2 + ‖

‖

zk+1 − z∗‖‖
2 + 2

⟨

zk − zk+1, zk+1 − z∗
⟩

≥ ‖

‖

zk − zk+1‖‖
2 + ‖

‖

zk+1 − z∗‖‖
2. (63)

Furthermore,
‖

‖

z0 − z∗‖‖
2 ≥ ‖

‖

zk − z∗‖‖
2 +

k−1
∑

i=0

‖

‖

zi − zi+1‖‖
2, (64)

and when k→∞,
∞ > ‖

‖

z0 − z∗‖‖
2 ≥

∞
∑

i=0

‖

‖

zi − zi+1‖‖
2. (65)

Therefore, when k→∞, it follows that
inf

z∈Mjk+1

‖

‖

zk − z‖‖ → 0, (66)

and hence the sequence {zk
}

k≥0 converges in norm to a point belonging toM ∩MJ+1 in the defined finite-dimensional Hilbert
spaceH .
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Using Theorem 4, an optimal ILC update law for systems with non-uniform trial lengths under input constraints is next
established, and consists of two parts. The first part is to find the optimal solution in the absence of the input constraints, i.e.,

ũk+1 = uk + G∗ek+1, (67)

which is consistent with (47) and can be implemented using Steps 1-6 given in the previous section. The second is to project
the optimal solution onto the constraint set Ω, i.e.,

uk+1 = argminu∈Ω

{

‖

‖

u − ũk+1‖‖
2
R

}

, (68)

which could be implemented by introducing the constraints on uk (t) into Steps 1-6 above.
The next result shows that the ILC problem in Definition 1 can be solved by (67) and (68) in the presence of input constraints.

Proposition 3. The input sequence {uk
}

k≥0 generated by update law (67) and (68) iteratively solves the ILC problem with
non-uniform trial lengths in Definition 1 under input constraints.

Proof. With the multiple closed sets defined in (58) and (59), the ILC problem can be still transformed into the projection
problem ontoMjk with the order of

{

Mj ,MJ+1,Mj ,MJ+1,…
}. Similar to the proof of Proposition 1, it follows that

PMj
(z) = argmin

û

{

‖ê‖2Q + ‖û − u‖2R
}

, (69)

for j ∈ {1, 2,… , J}, which can be solved by (67). Projecting onMJ+1 gives

PMJ+1
(z̃) = argmin

(0,û)∈MJ+1

{

‖0 − ẽ‖2Q + ‖û − ũ‖2R
}

= argmin
û∈Ω

{

‖û − ũ‖2R
}

, (70)

which can be solved by (68). Then, the sequence {uk
}

k≥0 generated by the update law (67) and (68) solves the ILC problem in
Definition 1 in this case.

AlthoughMJ+1 becomes a closed convex set for the problem considered, the convergence of alternating projections, in the
order of (25), can be still guaranteed under Assumption 1. Hence the convergence property of ILC update law (67) and (68) is
established as the following theorem.

Theorem 5. In the presence of input constraints, consider a system described by (1) with initial input u0 ∈ Ω. If Assumption 1
holds and (67) and (68) are applied, then

lim
k→∞

uk = u∗, lim
k→∞

‖

‖

ek‖‖ = 0. (71)

Proof. By Theorem 4 and Proposition 3, althoughMJ+1 is a closed convex set, the sequence {zk
}

k≥0 converges in norm to a
point that belongs toM ∩MJ+1 under the application of (67) and (68). Therefore, the distance between each two projections
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converges to 0, and hence
lim
k→∞

{

‖

‖

0 − ek‖‖
2
Q + ‖

‖

u∗ − uk‖‖
2
R

}

= 0. (72)

By Assumption 1, the convergence of (71) is established.

In the presence of input constraints, the specific monotonic performance of Remark 4 for the unconstrained case still exists.
Next, a numerical case study is given to illustrate the new results in this paper.

5 NUMERICAL CASE STUDY

In this section, a coarse-fine stage process is used to verify the effectiveness of the new design. The coarse-fine stage uses
multiple actuators, where coarse and fine actuators are respectively in charge of long and short range positioning. High-precision
positioning is usually required in many of its practical applications, including some that perform repeating tasks. Therefore,
ILC is usually applied to such systems for high tracking performance.34 However, varying trial lengths may happen during the
iterative learning process because of some unexpected obstacles in the path or other kinds of output constraints, which gives rise
to the non-uniform trial length case. In this simulation, the ILC control problem with non-uniform trial lengths in the control of
a coarse-fine stage is considered.

5.1 Modeling and Design

The employed coarse-fine stage consists of two parts: the coarse stage employs a rotary motor to drive a linear ball-screw stage,
and the fine stage is driven by a voice coil actuator. The outputs of the two stages are the position relative to the ground. Denote
by the superscript (⋅) the components of a vector. Then the inputs and outputs of the coarse and fine stages can be denoted by
u(1), y(1), u(2) and y(2), respectively. The transfer functions from u(1) to y(1), u(1) to y(2), u(2) to y(1) and u(2) to y(2) are as follows:

P11 (s) =
m2s2 + cs + k

D (s)
, P12 (s) =

m2s2

D (s)
, P21 (s) =

cs + k
D (s)

, P22 (s) =
m1s2 + bs
D (s)

,

D (s) = m1m2s4 +
(

bm2 + cm1 + cm2
)

s3 +
(

bc + km1 + km2
)

s2 + bks, (73)

where m1 and m2 respectively denote the masses of the coarse and fine stages, k and c respectively denote the stiffness and
viscous damping coefficient between the two stages, and b denotes the coefficient of viscous damping between the ground and
the coarse stage. For further details, see the original modeling process.34 The model parameters are as follows:

m1 = 39.3 kg, m2 = 0.5 kg, b = 60 Ns∕m, k = 105 N∕m, c = 45 Ns∕m. (74)
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Then, the discrete-time MIMO system dynamic matrices A∖B∖C used for the implementation procedure in Section 3.3 are
A = diag

{

A1,A2,A3,A4
} and B = [BT1 , BT2 ]T , where diag {⋅} denotes a diagonal matrix and

A1 = A2 = A3 = A4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0828 279.0791 423.1491 0

−0.0014 −0.2112 −1.8002 0

5.8957 × 10−6 −8.3944 × 10−4 0.9838 0

5.3190 × 10−8 1.0825 × 10−5 0.0099 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B1 = B2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−0.0014 0

5.8957 × 10−6 0

5.3190 × 10−8 0

1.9257 × 10−10 0

0 −0.0014

0 5.8957 × 10−6

0 5.3190 × 10−8

0 1.9257 × 10−10

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and

C =

⎡

⎢

⎢

⎢

⎣

0 0.0254 2.2901 5.0891 × 10−3 0 0.0254 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2.2901 5.0891 × 103 0 2 3.0534 0

⎤

⎥

⎥

⎥

⎦

.

This model is controllable and |CB| ≠ 0.
For the non-uniform trial length case, set the maximum and minimum tracking time of the coarse-fine stage as 2s and 1.8s

respectively, which means that the actual length Nk varies from Nm = 180 to N = 200 with sample time Ts = 0.01s. Note
that the new design requires no settings on the distribution of Nk, and a discrete uniform distribution is employed here for
simplicity. Without loss of generality, set xk (0) = [0 ⋯ 0

⏟⏟⏟
n

]T and u0 (t) = [0, 0]T , for t ∈ [0, N − 1]. The desired trajectory of
the positioning is taken as

y(1)d (t) = y(2)d (t) = 1.6t2
[

1 + cos
(�t
4
− �

)]

, (75)

which means the outputs of both coarse and fine stages follow the same paths and the initial positions of the two stages are
identical.

5.2 Simulation Results

The simulation is implemented in MATLAB R2020a. The weighting matrices are firstly selected as Q = 10000Im and R =

0.001Il , respectively. The design is for a total of 20 trials, and the 2nd, 4th and 20th output profiles are shown in Fig. 1. The
output of 20th trial can track the desired trajectory for 1 ≤ t ≤ N20 and the output of the first few trials are also plotted with
their actual trial lengths in Fig. 1. In particular, the outputs of the 4th trial have worse tracking performance during the interval
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FIGURE 1 The 2nd, 4th and 20th output profiles under the new ILC design with the desired trajectory.
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FIGURE 2 The variation of the actual trial lengths.

[

Nk, N
] and this also possibly occurs at the 20th trial especially when the number of desired length occurs less, which coincides

with Remark 2. The variation of the trial lengths is shown in Fig. 2.
The tracking errors in 2-norm along the trial are plotted in Fig. 3, which confirms that the tracking errors can converge

asymptotically to zero. For comparison, the ILC method based on an iterative average operator14 is employed with almost best
tuned learning gain 20Im, whose tracking errors measured by the 2-norm are also plotted in Fig. 3. Moreover, the P-type ILC
method with Arimoto-like gain19 is also simulated, with learning parameters tuned to 40Im. The 2-norm of tracking errors in
logarithmic coordinates are also given in Fig. 3. It is evident that the new ILC design converges faster than these two alternatives,
because model information is used in the proposed model-based optimal ILC design. The cost function of the new ILC design
defined in (46) is given in Fig. 4, and the input increment along the trial is given in Fig. 5 to account for the large values of cost
function. The monotonic convergence cannot be obtained because of the non-uniform trial length, which is consistent with the
discussion in Remark 4.
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FIGURE 4 The cost function of the new ILC design along the trial.

Different choices of the weighting matrices Q and R can result in different convergence performance of the new ILC design.
Fig. 6 gives the results of different Q and R, where increasing Q or decreasing R will result in faster convergence speed. From
an intuitive point of view, bothQ and R can decide the angle between sets defined in (15) and (16) in Hilbert spaceH . Changes
of the angle will fundamentally affect the results of the convergent sequence {zk

}

k≥0 and eventually affect the performance of
the new ILC design.
In addition, to check the constraint handling capability, the new ILC design is applied under input constraints. Fig. 7 and

Fig. 8 respectively present the 2nd, 4th and 20th output and input profiles with the input constraint [−3000N, 3000N]. The
actual output can still track the desired trajectory under input constraints after certain trials. The cost function of the new ILC
design under the saturation constraint is shown in Fig. 9. It is still convergent and there is less fluctuation along the trials. This
phenomenon is due to the varying trial length. The fluctuation of cost function along the trial axis may be decreased since input
constraints will restrict the sudden increase caused by varying trial lengths.
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FIGURE 5 The input increment of the new ILC design along the trial.
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6 CONCLUSION AND FUTUREWORK

In this paper, a novel alternating projection framework has been developed for ILC design with non-uniform trial lengths. The
causal feedback plus feedforward structure of the uniform norm optimal ILCwasmodified to give an implementation for discrete-
time systems with non-uniform trial lengths. Furthermore, it has been shown that alternating projections for analysis extends to
allow input constraints without the need to solve complex optimization problems. Moreover, the convergence properties of the
new ILC design were analyzed theoretically. Finally, a numerical simulation based on the model of a coarse-fine stage has been
given to demonstrate the effectiveness of the new design for discrete-time systems, including a comparison with two alternative
designs, namely, the iterative average ILC and P-type ILC with Arimoto-like gain.
For future work, the ILC design for continuous-time systems with non-uniform trial lengths, where there exists infinite number

of sets, will be studied. Furthermore, the new design will be implemented in practice to determine its experimental performance.
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FIGURE 7 The 2nd, 4th and 20th output profiles under the new ILC design with input constraints.
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FIGURE 8 The 2nd, 4th and 20th input profiles of the new ILC design with input constraints.

APPENDIX

A PROOF OF LEMMA 1

Before proving Lemma 1, a technical lemma is firstly introduced.

Lemma 2. The projection operator P is idempotent and self-adjoint.
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FIGURE 9 The cost function of the new ILC design under input constraints.

Proof. According to the projection theorem in Hilbert spaces, given a Hilbert space H and a subspace Z ⊂ H , each z ∈ H

can be written uniquely as z = z1 + z2, where z1 ∈ Z and z2 ∈ Z⊥. Then

P 2Z (z) = PZ
(

PZ
(

z1 + z2
))

= PZ
(

z1
)

= z1 = PZ (z) , (A1)

and the idempotent property is established. Given another z′ ∈ H , there exist unique z′1 ∈ Z and z′2 ∈ Z⊥, then
⟨

PZ (z) , z′
⟩

=
⟨

z1, z
′
1 + z

′
2
⟩

=
⟨

z1 + z2, z′1
⟩

=
⟨

z, PZ
(

z′
)⟩

, (A2)

and hence the self-adjoint property.

Proof of Lemma 1. According to Lemma 2, it follows that
⟨

PMj
(z), z − PMj

(z)
⟩

=
⟨

PMj
(z), z

⟩

−
⟨

PMj
(z), PMj

(z)
⟩

=
⟨

PMj
(z) , z

⟩

−
⟨

PMj

(

PMj
(z)

)

, z
⟩

= 0, (A3)

which yields z − PMj
(z)⊥PMj

(z) and zk−zk+1⊥zk+1 on adding the projection index k. Then, it follows from (A3) that ‖
‖

zk‖‖
2 =

‖

‖

zk+1‖‖
2 + ‖

‖

zk − zk+1‖‖
2, and by recursion

‖

‖

zm‖‖
2 = ‖

‖

zn‖‖
2 +

n−1
∑

k=m

‖

‖

zk+1 − zk‖‖
2. (A4)

Substituting (A4) into (23) gives ‖
‖

zn − zm‖‖
2 ≤ S

(

‖

‖

zm‖‖
2 − ‖

‖

zn‖‖
2
)

. Also, it follows from (A4) that ‖
‖

zk‖‖
2 is monotonically

decreasing and bounded below by 0, and therefore there exists a constant � ≥ 0 such that lim
k→∞

‖

‖

zk‖‖
2 = �. Furthermore, given

" > 0, there exists k ∈ ℕ such that 0 ≤ ‖

‖

zn‖‖
2 − � < "∕2S whenever n ≥ k. Therefore,

‖

‖

zn − zm‖‖
2 ≤ S

(

‖

‖

zm‖‖
2 − � + � − ‖

‖

zn‖‖
2
)

< S ⋅ "∕2S + S ⋅ "∕2S = ", (A5)
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and since the sequence {zk
}

k≥0 is a Cauchy sequence in Hilbert spaces,
{

zk
}

k≥0 converges in norm to a point, which is denoted
by z∞.
Since {jk

}

k≥0 takes every value in {1, 2,… , J} infinitely many times, there is a sub-sequence {zΔk(i)
}

k≥0 such that each
zΔk(i) ∈Mj . Then, there exists

⟨

zΔk(i), z
′⟩ = 0 for every point z′ ∈M⊥

j , which gives rise to
⟨

z∞, z
′⟩ =

⟨

lim
k→∞

zΔk(i), z
′
⟩

= lim
k→∞

⟨

zΔk(i), z
′⟩ = 0. (A6)

Therefore, there exists z∞ ∈Mj for each j ∈ {1, 2,… , J}, and hence we have z∞ ∈M =
⋂J
1 Mj .

Finally, z∞ = PM
(

z0
) must be established to complete the proof. To show that z∞ is the orthogonal projection of z0 onto

M , it suffices to show that z0 − z∞ ∈M⊥, since then

z0 =

∈M
⏞⏞⏞
z∞ +

∈M⊥

⏞⏞⏞
z0 − z∞, (A7)

by the projection theorem in Hilbert spaces. Let z ∈M , and hence z ∈Mjk+1 . Since the projection operator is self-adjoint and
idempotent, it can also be proved that zk − PMjk+1

(

zk
)

∈M⊥
jk+1

. Then
⟨

zk − zk+1, z
⟩

=
⟨

zk − PMjk+1

(

zk
)

, z
⟩

= 0, (A8)

which yields

⟨z0 − z∞, z⟩ = lim
k→∞

⟨z0 − zk, z⟩ = lim
k→∞

(

⟨z0 − z1, z⟩ + ⟨z1 − z2, z⟩ + ⋯ + ⟨zk−1 − zk, z⟩
)

= 0. (A9)

Finally, z ∈M , hence z0 − z∞ ∈M⊥, and the proof is complete.

B PROOF OF PROPOSITION 2

By the definition of the adjoint, it follows that

⟨e, Gu⟩Q = eTQGR−1Ru =
⟨

R−1GTQe, u
⟩

R = ⟨G∗e, u⟩R, (B10)

where R = diag {R,R,… ,R} ∈ ℝl⋅N×l⋅N and Q = diag {Q,Q… ,Q} ∈ ℝm⋅N×m⋅N. The update law (47) can now be written as

uk+1 = uk + R−1GTQek+1, (B11)

i.e.
uk+1 (t) = uk (t) +

N
∑

i=t+1
R−1BT

(

AT
)i−t−1CTQek+1 (i). (B12)
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Then, set pk+1 (t) as
pk+1 (t) =

N
∑

i=t+1

(

AT
)i−t−1CTQek+1 (i), (B13)

which yields (55), and hence for t ∈ [0, N − 1], pk+1 (t) can be computed by the recursion relation

pk+1 (t) = AT pk+1 (t + 1) + CTQek+1 (t + 1) , (B14)

with the boundary condition pk+1 (N) = 0. If it is assumed that the state of system (1) is fully known,33 there exists a causal
implementation with respect to pk+1 (t) in the form (56). It now follows from (1), (56) and (B14) that

xk+1 (t + 1) − xk (t + 1) = A
[

xk+1 (t) − xk (t)
]

+ BR−1BT pk+1 (t)

=
[

In + BR−1BTK (t)
]−1A

[

xk+1 (t) − xk (t)
]

+ BR−1BT �k+1 (t) . (B15)

Furthermore, to eliminate pk+1 (t), substituting (56) and (B15) to (B14) yields

f1 [X,K(t), K(t + 1)] ⋅
[

xk+1(t + 1) − xk(t + 1)
]

= f2
[

X,K(t + 1), �k+1(t), �k+1(t + 1), ek(t + 1)
]

, (B16)

where f1 (⋅) and f2 (⋅) are functions of their arguments and X =
{

A,B, C,Q,R−1
}. If both f1 (⋅) and f2 (⋅) are set equal

to 0, (B16) holds independently of system state and gives rise to the Riccati equation (53) and the difference equation (54),
respectively. Finally, if pk+1 (N) = 0 and bothK (N) and �k+1 (N) are also set equal to 0, (56) still holds independent of system
state when t = N .
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