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SUMMARY

This paper proposes an effective iterative learning control (ILC) approach based on successive

projection scheme for repetitive systems with randomly varying trial lengths. A modified ILC problem

is formulated to extend the classical ILC task description to incorporate a randomly varying trial

length, while its design objective considers the mathematical expectation of its tracking error to

evaluate the task performance. To solve this problem, this paper employs the successive projection

framework to give an iterative input signal update law by defining the corresponding convex sets

based on the design requirements. This update law further yields an ILC algorithm, whose convergence

properties are proved to be held under mild conditions. In addition, the input signal constraint can

be embedded into the design without violating the convergence properties to obtain an alternative

algorithm. The performance of the proposed algorithms is verified using a numerical model to show

the effectiveness at occasions with and without input constraints. Copyright © 2021 John Wiley &

Sons, Ltd.
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1. INTRODUCTION

Iterative learning control (ILC) is a control methodology specifically designed to improve the

task performance of systems working repetitively. As explained in [1], its main idea is to

utilize previous trial information to modify the system input signal to further achieve more

precise tracking for a target repetitive task. ILC is designed for specific repetitive tasks with

a finite time horizon, and its system state has to be initialized at the end of each trial. As

∗Correspondence to: Hongfeng Tao and Yiyang Chen
†Email: taohongfeng@jiangnan.edu.cn and yychen90@suda.edu.cn

Copyright © 2021 John Wiley & Sons, Ltd.

Prepared using acsauth.cls [Version: 2010/03/27 v2.00]



2 Z.H. ZHUANG, ET AL.

a simple but effective control strategy, ILC has been successfully implemented to various

applications, and typical examples can be listed as industrial robots [2–4], injection molding

machines [5], robotic-assisted biomedical systems [6] and chemical batch processing [7]. See [8]

for a comprehensive review of ILC.

Classic ILC problems usually assume that their repetitive trial lengths are fixed constant

values. However, research on how to relax this restriction has been conducted since in [9], where

a new non-standard ILC algorithm that does not use the standard assumption of uniform

trial length was developed for tracking periodic signals in repetitive control systems. It has

been pointed out in [10] that the system task may end early in some trial due to safety

considerations or under certain constraints in some practical applications. For instance, the

work in [11] studied the functional electrical stimulation process for upper limb movement or

gait assistance, and the results showed that the ILC implementation procedure may even be

terminated before the end of the entire stimulation process due to the muscle fatigue of stroke

patients. Meanwhile, the research in [12] reported that the entire task of a gantry crane has to

stop when its load approaches an obstacle, since it is only designed to move within the local

region of the required reference trajectory. In these applications, the ILC trial lengths are no

longer identical, and modified ILC framework should be designed to adapt this change.

The existing literature has already showed the examples of ILC applications to the class

of systems with non-uniform trial lengths. As stated in [11], the maximum batch length was

defined as the full length and zero elements were appended to the trials without the exact

full trial length. In this sense, classic ILC algorithms can then be employed to handle the

repetitive tracking task based on the modified trial information. The subsequent research in [13]

developed a design framework with monotonically convergence for linear systems with non-

uniform trial lengths, but this framework does not involve a strict mathematical model for this

kind of systems. Meanwhile, the work in [14–16] utilized random variables to denote the actual

trial lengths, and hence proposed the convergence of the linear and nonlinear discrete systems

in terms of mathematical expectation using an iteration-average operator. The following work

in [17] further gave two novel ILC schemes based on an iteratively moving average operator.

In [18], an ILC method designed by modified iteration average operator was developed for

nonuniform trial lengths, while the randomness of its pass lengths is described by the recursive

interval Gaussian distribution. Also, the limitation of prior probability distribution information

in the control design phase was removed in [19] to propose a switching system approach with

convergence properties. In addition, a deterministic model that needs no specific statistics was

built to solve ILC problem with nonuniform trial lengths in [20], where a persistent full-learning

assumption that there should exist a desired lengths in some bounded successive trial intervals

is required. Recently, a new structure of ILC update laws was proposed in [21] based on the

analysis tool of composite energy functions, which differed much from the existing approaches

using contraction mapping analysis.

Existing methods for ILC problems with randomly varying trial lengths only require the

gain parameters of the design to be within a certain range. Although the design freedom

of gain parameters is achieved by these methods, the optimal choice cannot be obtained

theoretically, which leads to lower convergence rate and non-monotonic convergence. In

addition, these methods have not embedded the system constraints into their design. To
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compensate these issues, the successive projection method was first developed in [22, 23]

to handle constrained ILC problems. This method utilizes abstract Hilbert space sets to

formulate design requirements, and then solves a sequence of optimization problems via

successive projection. In this sense, algorithms with great convergence properties are obtained,

which can be used to solve problems with system constraints. On the basis of successive

projection, the work in [24,25] respectively designed ILC algorithms for both discrete-time and

continuous-time systems with generalized ILC problems, and provided well-defined convergence

of the algorithms. In view of the great generality of successive projection in formulation and

convergence properties, it can be utilized to analyze this specific class of ILC problems.

This paper aims at applying the successive projection framework to solve the ILC problems

with randomly varying trial lengths. It first formulates mathematical notations as well as the

problem definition in a rigorous manner, and then fully employs the successive projection

scheme to propose an iterative implementational algorithm to solve this specific class of ILC

problem. Convergence properties of this algorithm are also proved to guarantee the achievement

of the control design objectives under mild conditions. Furthermore, this algorithm is further

extended to embed an input signal constraint as an extra design objective, and the convergence

properties can be proved in a similar way. The performance of the two algorithms are verified

by a numerical simulation model replicating the working environment of a gantry robot, and

the test results reveal their effectiveness.

The main contributions of this paper are summarized as follows:

• The successive projection framework is first used to solve ILC problems with non-uniform

trial lengths, under which an optimal ILC design for problems with randomly varying

trial lengths is obtained with the theoretical proof of convergence properties.

• Under the successive projection design, the probability distribution information of non-

uniform trial lengths is utilized to improve ILC algorithm performance.

• Input constraints are embedded as extra design objective, under which convergence

properties with non-uniform trial lengths are also proved by using successive projection.

The structure of this paper is organized as follows. The problem formulation is first addressed

in Section 2. Section 3 introduces an algorithm for problems with randomly varying trial lengths

under the framework of successive projection. Section 4 presents the extended scenarios of the

algorithm with input constraints. Simulation verifications are shown in Section 5, and the

conclusions are given in Section 6.

The main notations used in this paper are listed: E {·} and P {·} denote the the mathematical

expectation and the probability of an event, respectively. N denotes the set of natural number

and Rn and Rn×m denote the sets of n-dimensional real vectors and n×m real matrices,

respectively. lm2 [a, b] denotes the space of Rm valued Lebesgue square-summable sequences

defined on an interval [a, b]. The superscript T denotes the transpose and 0 denotes zero

vector with appropriate dimensions. P S(x) denotes the projection of x to the set S in some

Hilbert space. |·| and 〈·〉 respectively denote the absolute value and the inner product. X×Y
denote the Cartesian product of two spaces X and Y. Other notations will be introduced as

needed in the following paper.
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2. PROBLEM FORMULATION

This section first introduces the system dynamics as well as the mathematical notations, and

then formulates the definition of the exact ILC problem with randomly varying trial lengths.

2.1. System Dynamics

Consider a linear time-invariant discrete-time system with a state space form{
xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t),
(1)

where the subscript k ∈ N is the trial number index; t is the time index, t ∈ [0, Nd] and Nd is

the desired trial length. Note that xk(t) ∈ Rn, uk(t) ∈ R` and yk(t) ∈ Rm are the state, input

and output of the system (1) respectively. A, B and C are system matrices with appropriate

dimensions, and CB is full-rank. yd(t) is defined as the desired output trajectory. Initial state

satisfies E{xk(0)} = x0, where x0 is the identical expectation initial state.

For the system model (1) of the k-th trial, reformulate it to a lifted system framework, which

can be rewritten into the following operator form

yk = Guk + dk, (2)

where G and dk represent the system model and the effect of the initial conditions respectively,

i.e.

G =



CB 0 0 · · · 0

CAB CB 0 · · · 0

CA2B CAB CB · · · 0
...

...
...

...
...

CANd−1B CANd−2B CANd−3B · · · CB


, (3)

dk =
[

(CA)
T (

CA2
)T · · ·

(
CANd

)T ]T
xk(0). (4)

The input uk ∈ l`2[0, Nd − 1] and output yk ∈ lm2 [1, Nd] of the lifted system are denoted as

follows:

uk =
[
uTk (0), uTk (1), . . . , uTk (Nd − 1)

]T
, (5)

yk =
[
yTk (1), yTk (2), . . . , yTk (Nd)

]T
. (6)

The input Hilbert space l`2[0, Nd − 1] and output Hilbert space lm2 [1, Nd] are defined with

inner products and associated induced norms

〈u,v〉R = uTRv, ‖u‖R =
√
〈u,u〉R, (7)

〈y, z〉Q = yTQz, ‖y‖Q =
√
〈y,y〉Q, (8)
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where R ∈ Rl·Nd×l·Nd and Q ∈ Rm·Nd×m·Nd are real positive definite weight matrices. The

desired output yd ∈ lm2 [1, Nd] is denoted as

yd =
[
yTd (1), yTd (2), . . . , yTd (Nd)

]T
. (9)

2.2. Modified ILC Problem Definition

In classical ILC, a design postulate claims that every trial has an identical trial length. However,

there exist a certain range of systems, whose actual trial lengths may randomly vary from trial

to trial. Denote Nk as the actual trial length of the k-th trial and N− and N+ as the minimum

and maximum values of the actual trial lengths respectively. In practice, the maximum actual

trial length is considered as the desired trial length, which means Nd = N+. Then, the actual

trial length varies randomly within {N−, N− + 1, · · · , Nd}. So there will be τ = Nd −N− + 1

possible trial lengths in total. Let the probability of the trial length N−, N− + 1, · · · , Nd to be

p1, p2, · · · , pτ . Obviously, pi > 0, for 1 ≤ i ≤ τ , and there exists

τ∑
i=1

pi = 1. (10)

When the actual trial length is less than the desired trial length in a trial, the output of

the trial at t ∈ [Nk + 1, Nd] is somehow missing, which means the complete tracking error is

unavailable to compute the input signal for the next trial while using classical ILC. In this

case, we shall append zero signal values onto the missing time instances to give a complete

modified tracking error defined as

ek(t) =

{
yd(t)− yk(t), 1 ≤ t ≤ Nk,

0, Nk + 1 ≤ t ≤ Nd.
(11)

The modified tracking error of the lifted system framework is denoted as follows:

ek =


Nd︷ ︸︸ ︷

eTk (1), · · · , eTk (Nk),︸ ︷︷ ︸
Nk

0, · · · , 0


T

. (12)

Note that when Nk < Nd, ek 6= yd − yk. To eliminate the inequality, we further introduce the

following random matrix

Mk =

[
INk
⊗ Im 0

0 0(Nd−Nk) ⊗ Im

]
, N− ≤ Nk ≤ Nd, (13)

where Il and 0l denote unit matrix and zero matrix with dimension of l × l, and ⊗ denotes

Kronecker product. Then the equality can be obtained as

ek = Mk (yd − yk) ∈ lm2 [1, Nd]. (14)

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)
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To improve the learning efficiency, some termination strategies should be set appropriately

for MIMO systems with nonuniform trial lengths in practice. In this paper, a simple

termination strategy that all outputs end simultaneously when one of the outputs terminates

early is adopted. Actually, this strategy matches some actual situations. For example in [12],

if gantry crane stops when its load approaches an obstacle in x direction, the entire task must

be terminated for all outputs, i.e., the error is not considered after time index Nk.

In order to calculate the mathematical expectation of the random matrix, Bernoulli binary

random variable γk(t) is introduced to represent whether the output occurs at the time t at

the k-th trial. Denote p (t) to be the probability of the output occurrence at time t, i.e.

p (t) = P {(γk(t) = 1)} =

 1, 1 ≤ t ≤ N− − 1,
τ∑

i=t−N−+1

pi, N− ≤ t ≤ Nd.
(15)

The mathematical expectation of the random variables γk(t) can be calculated as

E {γk(t)} = P {γk(t) = 1} × 1 + P {γk(t) = 0} × 0 = p (t) , (16)

which gives rise to

M̄
∆
= E {Mk}=diag


N−−1︷ ︸︸ ︷

1, 1, · · · , 1, E {γk(N−)} , · · · , E {γk(Nd)}

⊗ Im
= diag


N−−1︷ ︸︸ ︷

1, 1, · · · , 1, p (N−) , · · · , p (Nd)

⊗ Im.
(17)

After defining the trial length variable, a random model is hence built to describe the system

dynamics of ILC tasks with varying trial lengths. Then, the corresponding ILC design problem

is defined as follows:

Definition 1

The ILC design problem with randomly varying trial lengths aims at designing an

ILC update law

uk+1 = f(uk, ek), (18)

to update the input signal using previous trial’s input and tracking error, which guarantees the

modified tracking error converges to zero as k →∞ along the trials in the sense of mathematical

expectation, i.e.

lim
k→∞

‖E {ek}‖ = 0. (19)

Definition 1 describes the problem to be discussed in this paper with simple and clear

mathematical expression, which provides the necessary theoretical basis for the control

algorithm design in the following sections.

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)
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3. ILC DESIGN USING SUCCESSIVE PROJECTION

In this section, an iterative algorithm is designed to solve the ILC problem in Definition 1

under the successive projection framework. Also, both the implementation instructions as well

as the convergence properties of the algorithm are discussed.

3.1. Successive Projection Interpretation

The design objective of the ILC problem in Definition 1 can be interpreted as: to iteratively

find an optimal input u∗∞ to make the mathematical expectation of tracking error converge to

zero. This statement is equivalent to iteratively finding a point (0, u∗∞) in the intersection of

the two following convex sets:

S1 = {(e,u) ∈ H : e = E{M (yd − y)},y = Gu + d} , (20)

S2 = {(e,u) ∈ H : e = 0} , (21)

where S1 and S2 represent the requirements on system dynamic and tracking objectives

respectively and e represents the mathematical expectation of modified tracking error. M

denotes the random matrix, whose definition is the same as the right side of (13). Note that

H is the Hilbert space defined by

H = l`2 [1, Nd]× lm2 [0, Nd − 1], (22)

whose inner product and associated induced norm are listed as follows:

〈(e,u) , (e,v)〉{Q,R} = eTQz + uTRv, (23)

‖(e,u)‖{Q,R} =
√
〈(e,u) , (e,u)〉{Q,R}, (24)

Remark 1

In order to apply the framework of successive projection for solving problem with nonuniform

trial lengths, the sets that represent both system dynamic and tracking objectives are modified

by utilizing mathematical expectation. Therefore, the convergence results in this paper are all

achieved in the random sense in spite of the deterministic formulation of successive projection

method.

To make ILC problem solvable, the next assumption is made in this paper.

Assumption 1

The two sets S1 and S2 represented by (20) and (21) have intersection region in the Hilbert

space H, i.e. S1 ∩ S2 6= ∅.

Remark 2

Assumption 1 is a sufficient and necessary condition for problem in Definition 1 being solvable,

which guarantees the tracking task is achievable. However, Assumption 1 does not always holds

in practice, which will be discussed in Section 4.

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)
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Figure 1. The implementation instructions of the successive projection method.

Since the two sets intersects with each other, there must exist a point x∗ = (0, u∗∞) ∈ S1 ∩ S2

and the ILC problem has a solution.

To solve the above problem, the successive projection method developed in [26] can be

adopted. The update scheme of this method is illustrated in Fig. 1, which repetitively projects

the point to the position on the two sets with minimum distance. To apply this method,

Lemma 1 is needed for later convergence performance analysis.

Lemma 1

Let S1 and S2 be two closed convex sets in a Hilbert space X. Define projection operators as

P S1
(x) = arg min

x̂∈S1

‖x̂− x‖2X , (25)

P S2(x) = arg min
x̂∈S2

‖x̂− x‖2X , (26)

Let x̃k ∈ S1 and xk ∈ S2, then for x0 ∈ X, project it successively using

x̃k+1 = P S1
(xk), xk+1 = P S2

(x̃k+1), k ≥ 0, (27)

then the monotonic convergence condition is achieved

‖xk+1 − x̃k+1‖2X ≤ ‖x̃k+1 − xk‖2X ≤ ‖xk − x̃k‖
2
X . (28)

If S1 ∩ S2 6= ∅, for any x ∈ S1 ∩ S2 and k ≥ 0, the following inequality is satisfied

‖x− xk+1‖2X ≤ ‖x− x̃k+1‖2X ≤ ‖x− xk‖
2
X (29)

and there always exists an integer N such that for

inf
x̃k∈S1

‖x− x̃k‖ < ε inf
xk∈S2

‖x− xk‖ < ε, k ≥ N (30)

for any scalar ε > 0.

Proof

See [26] for the detailed proof.

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)

Prepared using acsauth.cls DOI: 10.1002/acs



ITERATIVE LEARNING CONTROL FOR PROBLEM WITH NONUNIFORM TRIAL LENGTHS 9

Using Lemma 1, an algorithm is developed to solve the ILC problem in Definition 1 as

follows:

Algorithm 1

Given system dynamics (1), any initial input u0 and the corresponding tracking error, then

an input sequence {uk}k≥0 for the ILC design problem in Definition 1 can be generated by

the ILC update law

uk+1 = arg min
û

{∥∥M̄(yd −Gû− dd)
∥∥2

Q
+ ‖û− uk‖2R

}
, (31)

where dd is the expectation of the initial conditions and is denoted as

dd =
[

(CA)
T (

CA2
)T · · ·

(
CANd

)T ]T
xd(0). (32)

Proposition 1

The input sequence generated by Algorithm 1 iteratively solves the ILC design problem in

Definition 1.

Proof

Since X = H and the two convex sets are defined by (20) and (21), the successive projection

method is applied to solve the equivalent problem according to Lemma 1. In this sense,

it follows that x̃ = (ẽ, ũ) ∈ S1 and x = (0,u) ∈ S2. Then, the projection operator P S1 is

computed as

P S1
(x) = arg min

x̂∈S1

‖x̂− x‖2H (33)

= arg min
(ê,û)∈H

‖(ê, û)− (0,u)‖2{Q,R}

= arg min
(ê,û)∈H

{
‖ê− 0‖2Q + ‖û− u‖2R

}
= arg min

û

{∥∥M̄(yd −Gû− dd)
∥∥2

Q
+ ‖û− u‖2R

}
,

which is an optimization problem, and its solution is û = ũ∗, where ũ∗ is the right hand side

part of (33), then we have

P S1
(x) = (M̄(yd −Gũ

∗ − dd), ũ
∗). (34)

Similarly, the projection operator P S2 gives rise to

P S2
(x̃)= arg min

x̂∈S2

‖x̂− x̃‖2H

= arg min
(0,û)∈H

‖(0, û)− (ẽ, ũ)‖2{Q,R}

= arg min
(0,û)∈H

{
‖0− ẽ‖2Q + ‖û− ũ‖2R

}
. (35)

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)
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Note that the solution of the optimization problem (35) can be simply taken as û = ũ, so we

have

P S2
(x) = (0, ũ). (36)

From Lemma 1, given an initial point x0 = (0,u0) ∈ S2, the successive projection yield the

ILC input update law (31) along the trials.

When solving ILC problems with randomly varying trial lengths in practice, Algorithm 1

can be easily implemented without any difficulties.

3.2. Implementation Instructions of the Update Law

To obtain the straightforward form of the ILC update law (31), the quadratic programming

(QP) problem on its right hand side should be solved. Therefore, according to the inner product

of Hilbert space (23) and related induced norm (24), a performance index function is defined

as follows:

Jk+1 (uk+1) = ‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R . (37)

Then, the solution to obtain the ILC update law is shown below.

Theorem 1

The update law (31) has a feedforward solution

uk+1 = uk + Lek, (38)

where L =
(
GTKG+R

)−1
GT M̄TQ is the learning operator and K = E

{
MT
k QMk

}
. In

addition, the inequality∥∥∥I −QM̄GL−
(
QM̄GL

)T
+(GL)

T
KGL+ LTRL

∥∥∥ ≤ ‖Q‖ (39)

is satisfied for any R and Q.

Proof

Since the mathematical expectations of random matrices at these trials are the same, substitute

(2) and (14) into the performance index function (37) to derive the solution

(
GTKG+R

)
E {uk+1} =

(
GTKG+R

)
E {uk}+GTE

{
MT
k

}
QE {ek}+GTKE {dk − dk+1} .

(40)

Since E{xk(0)} = x0, then

E {dk − dk+1} = dd − dd = 0. (41)

Since the matrix (GTKG+R) is invertible, substitute (41) into (40) to obtain the feedforward

solution (38).

Furthermore, note that the above solution yields

Jk+1 (uk+1) ≤ Jk+1 (uk) , (42)

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)
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ITERATIVE LEARNING CONTROL FOR PROBLEM WITH NONUNIFORM TRIAL LENGTHS 11

which is equivalent to

‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R ≤ ‖E {ek}‖
2
Q . (43)

Then, substitute (38) into the left side of (43) to give

E
{
eTk

[
(I −MkGL)

T
Q (I −MkGL) + LTRL

]
ek

}
≤ E

{
eTkQek

}
. (44)

Taking the 2-norm ‖·‖ on both sides of (44) to give∥∥∥E {(I −MkGL)
T
Q (I −MkGL) + LTRL

}∥∥∥ ≤ ‖Q‖ , (45)

which gives rise to (39).

Remark 3

There is no strict rule on the selection of the weight matrices Q and R, but some comments

are provided in [27]. As usual, both increasing the value of Q and reducing R accelerate the

algorithms convergence, while the robustness may become poor simultaneously. Also, (39)

should be satisfied in this paper.

While deriving the feedforward solution (38), a property is exploited such that the

mathematical expectations of random matrices at different trials are the same. To obtain

the value of K, we follow the same way as shown in (17). Therefore, when Q = qI, Mk is a

diagonal matrix, then we have

K = E
{
MT
k QMk

}
= qI · diag


N−−1︷ ︸︸ ︷

1, · · · , 1, E
{
γk

2(N−)
}
, · · · , E

{
γk

2(Nd)
}⊗ Im, (46)

where q is a non-negative scalar. Noting that when elements on the diagonal in Mk is 1, for

t ∈ [N− + 1, Nd], the corresponding elements in MT
k is 1, necessarily. Then, calculate the value

of E
{
γk

2(t)
}

in (46) as like (16), such that

E
{
γk

2(t)
}

= P
{
γk

2(t) = 1
}
× 1 + P

{
γk

2(t) = 0
}
× 0 = p (t) , (47)

which gives rise to

K=qI · diag


N−−1︷ ︸︸ ︷

1, 1, · · · , 1, p (N−) , · · · , p (Nd)

⊗ Im = qM̄. (48)

In addition, it is noted that for any trials in systems with nonuniform trial lengths, the

probabilities of the output occurrence at different time instants are not all the same, and these

probabilities will monotonically reduce as time goes forward, i.e.,

P {γk(t) = 1} > P {γk(t+ 1) = 1} , t ∈ [N−, Nd − 1]. (49)
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Therefore, it can be considered that we add weights along the time axis of each trial according

to the essential property of the varying trial lengths when M̄ as well as K are introduced in

the update law (38), and thus a better performance can be achieved. It is also noted from (49)

that if there exists an output at the later time instant, there must exists an output at the

previous time instant, but the opposite is not necessarily true. Then, for any a, b ∈ [1, Nd], we

have

P {γk(a)γk(b) = 1} = P {γk(a) = 1} = p (a) , a > b. (50)

Based on the property (50), to show the better performance of the proposed algorithm in the

sense of random, the variance of the tracking error, which is denoted as D {ek+1}, can be

employed. It follows that

D {ek+1}=E
{

(ek+1 − E {ek+1}) (ek+1 − E {ek+1})T
}

=E {β}Z − M̄ZM̄T ,
(51)

where

Z=(yd −Guk+1 − dd)(yd −Guk+1 − dd)
T ,

E {β}=



p(1) p(2) p(3) · · · p(Nd)

p(2) p(2) p(3) · · · p(Nd)

p(3) p(3) p(3) · · ·
...

... · · · · · ·
. . .

...

p(Nd) · · · p(Nd)


⊗ Im.

With (51), further effectiveness of the proposed algorithm can be checked, which is shown in

Section 5.

3.3. Convergence Properties Analysis

According to Assumption 1, the two sets S1 and S2 intersect at a point x∗ = (0, u∗∞) in the

Hilbert space H. The convergence properties of Algorithm 1 are explained as below.

Theorem 2

If S1 ∩ S2 6= ∅, Algorithm 1 achieves monotonic convergence of tracking error in the sense of

mathematical expectation,

‖E {ek+1}‖ ≤ ‖E {ek}‖ , (52)

and

lim
k→∞

uk = u∗∞, lim
k→∞

‖E {ek}‖ = 0. (53)

Proof

As both S1 and S2 are finite-dimensional closed convex sets in the Hilbert space H, from (30)

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)

Prepared using acsauth.cls DOI: 10.1002/acs



ITERATIVE LEARNING CONTROL FOR PROBLEM WITH NONUNIFORM TRIAL LENGTHS 13

in Lemma 1, we have

lim
k→∞

{
‖E {0− ek}‖2Q + ‖u∗∞ − uk‖2R

}
= 0,

lim
k→∞

{
‖E {0− ẽk}‖2Q + ‖u∗∞ − ũk‖2R

}
= 0, (54)

which gives rise to

lim
k→∞

uk = lim
k→∞

ũk = u∗∞, lim
k→∞

‖E {ek}‖ = lim
k→∞

‖E {ẽk}‖ = 0. (55)

Therefore, {x̃k = (E {ẽk} , ũk)}k≥0 and {xk = (E {ek} ,uk)}k≥0 both converge to x∗ =

(0,u∗∞). Furthermore, there exists

Jk+1 (uk) = ‖E {ẽk}‖2Q ≥ Jk+1 (uk+1) = ‖E {ek+1}‖2Q + ‖uk+1 − uk‖2R ≥ ‖E {ek+1}‖2Q ,
(56)

which proves monotonic convergence properties.

Theorem 2 theoretically guarantees the convergence properties of Algorithm 1 in terms of

tracking error, which promotes its potential practical application.

4. EXTENDED SCENARIOS WITH INPUT CONSTRAINTS

When the input signal is constrained, Assumption 1 may not generally true in practice.

However, the successive projection method can be still utilized to solve the ILC problem

in Definition 1. Therefore, an extended ILC algorithm is specially designed to handle input

constraints, whose convergence properties are also proved.

4.1. Input Constraint Forms

To ensure the safety in an actual production process or achieve extra performance requirements,

certain constraints on the input signals are required. According to engineering characteristics,

the input constraint set Ω is a convex set on plenty of occasions. Some exemplary forms of the

input constraints are listed as below.

• Input saturation constraint

Ω= {u ∈ l2 [0, Nd − 1] : |u (t)| ≤ Z (t) , 0 ≤ t ≤ Nd − 1} , (57)

• Input energy constraint

Ω=

{
u ∈ l2 [0, Nd − 1] :

Nd−1∑
t=0

uT (t)u (t) ≤
Nd−1∑
t=0

Z (t)

}
, (58)
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• Input rate constraint

Ω= {u ∈ l2 [0, Nd − 1] : |∆u(t)| ≤ Z (t) , 0 ≤ t ≤ Nd − 1} , (59)

where Z (t) is a non-negative scalar for 0 ≤ t ≤ Nd − 1 and ∆u (t) =u (t)− u (t− 1) with

∆u (0) = u (0).

Input constraints include but are not limited to the above three forms, in which saturation

constraint form is one of the most common input constraints in practice, which ensures the

system operates within a safe region. Therefore, the input saturation constraint is considered

in latter numerical simulation section.

4.2. ILC Algorithm Design

When the input signal is constrained, the quadratic programming problem with randomly

varying trial lengths and input constraints is indeed a constrained QP problem as follows:

uk+1 = arg min
û∈Ω
‖E {M(yd −Gû− d)}‖2Q + ‖û− uk‖2R , (60)

which is hard to solve directly. In this case, the successive projection method can be still

used to design the following algorithm under input constraints, which is relatively easier to

implement in practice.

Algorithm 2

Given system dynamics (1), any initial input u0 ∈ Ω and the corresponding tracking error, an

input sequence {uk}k≥0 for the ILC design problem in Definition 1 can be generated by the

ILC update law

ũk+1 = uk + Lek (61)

followed by the input projection

uk+1 = arg min
û∈Ω
‖û− ũk+1‖2R , (62)

where L is the same as that in (38).

Proposition 2

The input sequence generated by Algorithm 2 iteratively solves the ILC design problem in

Definition 1 with input constraints.

Proof

According to Lemma 1, the functionality of Algorithm 2 can be still explained by successive

projection. The sets S1 and S2 are now defined by

S1 = {(e,u) ∈ H : e = E{M(yd − y)},y = Gu + d} , (63)

S2 = {(e,u) ∈ H : e = 0,u ∈ Ω} . (64)
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Similar to the proof of Algorithm 1, the solution of P S1
is

P S1(x) = (E {M(yd −Gũ
∗ − d)} , ũ∗), (65)

where ũ∗ = u + LM (yd −Gu− d) is obtained from (38). The solution of P S2
is

P S2
(x) = (0,u∗), (66)

where u∗ = arg min
û∈Ω
‖û− ũ‖2R is the input projection on Ω.

Then, according to Lemma 1, given an initial point x0 = (0,u0) ∈ S2, the input sequence

{uk}k≥0 updated by (61) and (62) using successive projection can solve the ILC problem in

Definition 1 with input constraints.

The successive projection method can incorporate the input constraints into the algorithm

design perfectly, which is a benefit in solving tracking problems with constraints.

Remark 4

It is difficult to solve the constrained QP problem, which may cause online computational

problems. Algorithm 2 converts the constrained QP problem into an unconstrained QP problem

and an input projection step through the method of successive projection, which are both non-

trivial to solve. When the input constraint set Ω is in form of saturation constraint (57), the

solution of (62) can be simply computed as follows:

uk+1 (t) =


Z(t), ũk+1 (t) > Z (t) ,

ũk+1 (t) , |ũk+1 (t)| ≤ Z (t) ,

−Z (t) , ũk+1 (t) < −Z (t).

(67)

4.3. Convergence Properties Analysis

The convergence properties of Algorithm 2 are shown in the theorem below.

Theorem 3

If S1 ∩ S2 6= ∅, Algorithm 2 achieves convergence of the input signal and the tracking error in

mathematical expectation, i.e.

lim
k→∞

uk = u∗∞, lim
k→∞

‖E {ek}‖ = 0. (68)

Furthermore, the monotonically convergence can be achieved with respect to the performance

index defined by

Jek = ‖E {(I −MkGL) ek}‖2Q + ‖Lek‖2R . (69)

Proof

The proof of (68) follows from the proof of Theorem 2 and is hence omitted here. Note that

‖xk − x̃k‖2H in (28) is the minimum distance from xk to the set S1, i.e.

‖xk − x̃k‖2H = min
û

{
‖E {M(yd −Gû− d)}‖2Q + ‖û− uk‖2R

}
. (70)
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Substitute u∗ = uk + Lek into the above equation to give

Jek = ‖xk − x̃k‖2H = ‖E {(I −MkGL) ek}‖2Q + ‖Lek‖2R , (71)

and

Jek+1 = ‖xk+1 − x̃k+1‖2H = ‖E {(I −Mk+1GL) ek+1}‖2Q + ‖Lek+1‖2R . (72)

According to (28), there exists Jek ≥ Jek+1, and the monotonic convergence of the performance

index Jek is achieved.

Remark 5

Theorem 3 obtains a specific form of monotonic convergence of the weighted error norm as

shown in (69). Moreover, without input constraints, Theorem 3 collapses Theorem 2 that

achieves the monotonic convergence of tracking error in the sense of mathematical expectation

as in (52).

When analyzing the convergence of Algorithm 1, the situation when S1 ∩ S2 = ∅ also needs

to be considered. This is because that the input constraints may contradict with the tracking

design objective and there does not exist a single possible plan under the constraints to perform

desired tracking, which means the Assumption 1 may not hold. Another lemma is introduced

for convergence analysis when Assumption 1 does not hold.

Lemma 2

Let S1 and S2 also be two closed convex sets in a Hilbert space X. For x0 ∈ X, let x̃k ∈ S1

and xk ∈ S2, project it successively using (27). If S1 ∩ S2=∅, then the distance between the

two sets S1 and S2 converges to the minimum distance d (S1, S2) between the two sets defined

by

d (S1, S2) = min
x̃∈S1,x∈S2

‖x̃− x‖2X . (73)

Proof

Also see [26] for the detailed proof.

Under Lemma 2, the corresponding results are shown in the following theorem.

Theorem 4

If S1 ∩ S2 = ∅, Algorithm 2 makes the tracking error converge to a bound in the sense of

mathematical expectation and the monotonic convergence with respect to the performance

index (69) is also achieved.

Proof

Using Lemma 2, define r1 = (ẽ, ũ) ∈ S1, r2 = (0,u∗s) ∈ S2 as the two end points of the line

segment when the two sets take the minimum distance, and this is also the solution to the

following optimization problem

(r1, r2) = arg min
x̃∈S1,x∈S2

‖x̃− x‖2H , (74)
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which is equivalent to

(u,u∗s) = arg min
u∈Ω,ũ

{
‖E {M(yd −Gũ− d)}‖2Q + ‖ũ− u‖2R

}
. (75)

Therefore, the optimal solution with input constraints is

u∗s = arg min
u∈Ω

{
min
ũ
‖E {M (yd −Gũ− d)}‖2Q + ‖ũ− u‖2R

}
. (76)

The optimal solution of the inner minimization problem in (76) is

ũ = u + LM (yd −Gu− d) . (77)

Substitute (77) into (76) to give

u∗s = arg min
u∈Ω

{
‖E {(I −MkGL) ek}‖2Q + ‖Lek‖2R

}
= arg min

u∈Ω
Jek (78)

The weights (I −MkGL) and L before ek in (69) are both invertible, so the performance index

(69) is strictly convex. Due to the constraint set Ω is convex, (78) has unique solution. So we

have

lim
k→∞

‖E {ek}‖ = ‖E {Mk (yd −Gu∗s − dd)}‖ =
∥∥M̄ (yd −Gu∗s − dd)

∥∥ ∆
= a, (79)

where a is a constant. Therefore, the tracking error converges to a bound in the sense of

mathematical expectation. The proof of the monotonic convergence properties of (69) is similar

to that of Theorem 3.

By using the idea of successive projection, whether Assumption 1 holds or not, the algorithm

tries its best to reduce the distance between the two sets, which makes the tracking error in

the sense of mathematical expectation converge asymptotically.

5. NUMERICAL SIMULATION VERIFICATIONS

The proposed algorithms are tested on a numerical simulation model to perform a control

task with physical meanings. The results illustrate the effectiveness and feasibility of these

algorithms, and comparisons are made with respect to classical ILC algorithm to show their

advantages.

5.1. Control Task Specifications

A numerical simulation model is employed in this section to check the algorithm performance.

This model replicates the working environment of the vertical moving axis of a three-axis

gantry robot. In order to avoid collision between actuator and frame, some output terminal

conditions should also be taken into account. For example, when the output exceeds the given

range or region, this task must end earlier before reaching the expected actual trial length,

which may result in the random variance of the trial lengths. The transfer function of this

Copyright © 2021 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2021)

Prepared using acsauth.cls DOI: 10.1002/acs



18 Z.H. ZHUANG, ET AL.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time,t(s)

-1

-0.5

0

0.5

1

1.5

2

o
u
tp

u
t 
p
ro

fi
le

s
 o

f 
A

lg
o
ri
th

m
 1

,y
(m

)

10-3

the desired trajectory

the 1st output

the 3rd output

the 25th output

Figure 2. The reference trajectory and output trajectories of Algorithm 1.

model is

Gz (s) =
15.8869 (s+ 850.3)

s
(
s2 + 707.6s+ 3.377× 105

) , (80)

which together with a closed-loop gain 300 yield the state-space matrices in (1) as

A =

 0.0214 0.0451 0.0124

−0.0515 −0.0497 −0.1771

0.0916 0.1202 0.9081

 , B =

 −5.03× 10−5

7.16× 10−4

3.71× 10−4

 ,
C =

[
0 0.0621 0.8245

]
,

(81)

after discretization using a zero-order holder at sample time Ts = 0.01s. Assume the actual

trial length of the repetitive process is T = 2s, which means the total number of sample points

at each trial process is 200, i.e. Nd = 200. When performing a tracking task, the gantry robot

may move up and down. Therefore, for the vertical axis, the desired reference trajectory is

defined as

yd (t) = 0.001

[
sin

(
πt

100

)
+ sin

(
πt

10

)
+ sin

(
5πt

2

)]
. (82)

Moreover, set initial state as a random variables with probability P
[
xk (0) = x1

]
=

P
[
xk (0) = x2

]
= P

[
xk (0) = x3

]
= 1/3, where x1 = [0, 0, 0.0001]

T
, x1 = [0, 0, 0]

T
and x1 =

[0, 0,−0.0001]
T

and it satisfies E {xk (0)} = xd (0) = [0, 0, 0]
T

. Let the trial length vary from

160 to 200 with discrete uniform distribution, which means pi = 1/41. Without loss of

generality, set u0 = 0.

5.2. Simulation Results

Choose Q = 10I and R = 0.0001I, and perform Algorithm 1 with a total number of 25 trials

with the last trial length being the desired length for better observation. The output trajectories

are plotted in Fig. 2 for the first few trials and the final trial, and the reference trajectory

is also plotted in the same figure for evaluation. It is obvious that the system trial length
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varies randomly but the output can track the reference trajectory after 25 trials. Moreover,

the tracking errors of the system along the trials are shown in Fig. 3. Recall that the 2-norm of

tracking error is proved to converge monotonically in the sense of mathematical expectation in

Theorem 2, while the profiles in Fig. 3 can not show this stochastic property. For comparisons,

the classical P-type ILC algorithm in [19] and averaging operator ILC in [15] for the same

problem are simulated and plotted in Fig. 3. The learning gains of both comparative methods

are designed as causal gain mentioned in [19]. These comparisons reveal the advantages of

Algorithm 1 in convergence speed. In addition, the comparisons of different choice with respect

to weight matrices are also represented in Fig. 3, which is magnified clearly inside. Increase

the value of weight matrix Q and retain R, faster reduction of errors is obtained. In contrast,

reduce the value of weight matrixR and retainQ, the convergence of Algorithm 1 is accelerated.

From the simple comparison, we can verify what is mentioned in Remark 3. Besides, 2-norm

of variances with respect to the tracking error sequences for the proposed algorithm and
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Figure 5. Input signals of Algorithm 2 when Assumption 1 holds.
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Figure 6. Input signals of Algorithm 2 when Assumption 1 does not hold.

comparative methods are presented in Fig. 4. Compared with classical P-type ILC, methods

with operation of averaging, including both the proposed algorithm and the averaging operator

ILC, can achieve lower variances. It means that smaller fluctuation is obtained when with

nonuniform trial lengths. Accordingly, while the convergent variance of the averaging operator

ILC is smaller than that of the proposed algorithm, faster convergence speed can be achieved

in optimal ILC design.

Furthermore, consider the situation with input constraints whose form is taken as the

saturated form shown in (67), and choose Q = 20I and R = 0.00001I. Set |u(t)| ≤ 0.8, t =

1, 2, · · · , Nd and |u(t)| ≤ 0.4, t = 1, 2, · · · , Nd representing the situation when Assumption 1

holds and does not hold respectively. Algorithm 2 is hence conduced for 25 trials for these

two cases, whose tracking performance is similar to the above unconstrained case. The

corresponding input signals for the first few trials and the final trial are shown in Fig. 5

and Fig. 6. These results confirm the constraint handling ability of this algorithm.
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It is shown in Fig. 7 that when the input constraint applies, the tracking error can still

converge when Assumption 1 holds or not and the convergence speed is still faster than other

two comparative methods. It is interesting to see that the convergence bound a of Algorithm

2 seems to be smaller than that of P-type ILC when Assumption 1 does not hold and this

phenomenon is worth studying. The actual value of the performance index (69) at these two

cases is shown in Fig. 8 under logarithmic coordinates, which demonstrates the convergence of

this value. However, the convergence is not monotonic, which seems to differ from what have

been proved before. This is because of the fact that actual value of the performance index (69)

differs from its exception value.
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6. CONCLUSION AND FUTURE WORK

The successive projection method is utilized to address the repetitive tracking problems with

randomly varying trial lengths. With the mathematical formulation of an specific ILC problem,

two algorithms are designed via successive projection method to solve this problem for the

situations that input is constrained or not. The implementation instructions as well as the

convergence properties tracking error in the sense of mathematical expectation are shown in

detail. A numerical simulation case study is performed to show the effectiveness and feasibility

of the proposed algorithms on a gantry robot based working environment. Also, comparison

is made with classical ILC algorithm to reveal its advantages.

For future work, the proposed algorithms will be implemented on an experimental test

platform to check its practical performance. Also, when the systems with randomly varying

trial lengths only track specific points or the systems may have different time scales, the

modification and extension of these algorithms needs to be taken into consideration. At last,

the robust performance against model uncertainty of these algorithms needs a rigorous analysis

in further study.
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