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Abstract: Iterative learning control (ILC) is typically applied in practice combined with a feedback controller for time-domain
stability. In this closed-loop design with actuator constraints, existing constrained ILC designs suffer from determining the exact
input constraint on the ILC controller. This issue brings in an important gap between the existing constrained ILC designs and
their real-world applications. This paper gives a systematic consideration of the input constraint problem in the closed-loop
ILC design with actuator saturation. A constraint-aware ILC is developed to autonomously determine the constraint on the
feedforward controller. The convergence of the constrained ILC process is proved under the framework of alternating projection.
Finally, the effectiveness of the developed method is verified on a numerical simulation.
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1 Introduction

Iterative learning control (ILC) aims at solving repetitive
tasks within a limited time duration. The repetitive factors,
including the reference signal and external unknown distur-
bances, can be handled by ILC. ILC has been applied to
plenty of scenarios, such as batch process [1, 2], rehabilita-
tion [3], and precision motion systems [4, 5]. Refer to [6–8]
for the overview of ILC.

ILC is usually applied in the closed-loop design as a feed-
forward part, which combines a feedback controller to en-
sure stability in the time domain. Common closed-loop
structures include parallel ILC and serial ILC [7, 9], both
cases demand constraints on the actuator for safety or other
reasons. Note that the design of ILC has a feedback mech-
anism in the trial domain. The ILC signal would accumu-
late trial by trial and bring in performance degradation in the
closed-loop designs. Therefore, an appropriate restriction
should be given on the ILC controller, which enables ILC
with constraint awareness.

There are plenty of constrained ILC designs in the liter-
ature. In [10, 11], the input constraint is considered in the
design of ILC update law, which can ensure the trial-domain
error convergence. The hyperbolic tangent function is em-
ployed in [12,13] to smoothly tackle input constraints so that
it can improve the ILC performance under input constraints.
Besides, an anti-windup compensator from the time domain
is considered in the ILC systems to avoid instability in the
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trial domain [14].
In addition, the ILC design with input constraints can be

reformulated into a constrained optimization problem, which
can be solved by numerical optimization methods [15, 16].
This optimization-based ILC (OBILC) design can address
the input constraints in an effective manner. In [17, 18], the
barrier method is incorporated in the ILC design to solve
the constrained ILC problem under input constraints. The
comparison of convergence speed between the gradient de-
scent method and the Newton-based design is investigated
in [19], where OBILC is considered to solve a point-to-point
tracking problem under mixed constraints. In [21] and [20],
the conic input mapping and the forward-backward splitting
algorithm are respectively used in the ILC designs, where
better control performance and faster convergence rate are
obtained. However, the aforementioned methods are mainly
considered in an open-loop perspective with given input con-
straints. When ILC is applied in a closed-loop structure to-
gether with a feedback controller, the actuator constraint is
typically known rather than the constraint on the ILC con-
troller directly.

In this paper, a constraint-aware ILC design is devel-
oped in the closed-loop parallel structure with actuator sat-
uration using alternating projections. The trial-domain in-
tegral windup is avoided by enabling ILC with constraint
awareness. The convergence performance is improved com-
pared to the traditional norm optimal ILC (NOILC) with-
out constraint-aware design. Also, a systematical consider-
ation of input constraints is investigated in the closed-loop
ILC design, where the constraint on the ILC controller is au-
tonomously determined according to the given actuator sat-
uration. The convergence analysis is given under the frame-
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Fig. 1: The closed-loop control block diagram.

work of alternating projection, providing a holistic perspec-
tive on the constrained ILC design by geometric theory. The
developed method is verified on a numerical example.

This paper is organized as follows. Section 2 gives the
problem formulation to introduce the ILC problem consid-
ered in this paper. The constraint-aware ILC is developed in
Section 3, where an OBILC design is given in the closed-
loop design with actuator saturation. In Section 4, the devel-
oped method is verified by a numerical simulation. Finally,
the conclusion and future work is given in Section 5.

The notations of the paper are given as follows. N denotes
the set of natural numbers. Rn and Rn×m denote the sets
of n-D real vectors and n × m real matrices, respectively.
The zero vector with appropriate dimensions is represented
by the notation 0. l2[a, b] denotes the space of R1 valued
Lebesgue square-summable sequences defined on an interval
[a, b]. The superscript> denotes the transpose. The notation
〈·〉 denotes the inner product, and X × Y denotes the Carte-
sian product of two spaces X and Y. The notation sgn (·)
denotes the signum/sign function. Other notations will be
introduced once it occurs in the paper.

2 Problem Formulation

2.1 Preliminaries
Consider a closed-loop feedback control block diagram as

shown in Fig. 1 that performs a repetitive task of finite time
length N < ∞, where t = 1, 2, · · · , N is a discrete-time
index. The subscript k ∈ N denotes the trial index. In Fig.
1, a stabilizing feedback control C(q−1) is first designed for
the given linear time-invariant (LTI) system H(q−1) where
H(q−1) and C(q−1) are transfer functions represented by the
time-forward operator q. The notations ufb

k (t), uk(t) and
yk(t) are the kth outputs at time instant t of feedback con-
troller, feedforward controller and the system, respectively.
The total input from both feedback and feedforward con-
troller is denoted by U(t) = ufb(t)+u(t), which is the input
of the actuator. In practice, there usually exists a constraint
block for the input constraint of the actuator. This paper con-
siders a actuator saturation constraint, which is defined as

sat (U(t), ū) , sgn (U(t)) min {|U(t)|, ū} , (1)

where the actuator saturation is symmetrically constrained
by an identical absolute limit ū for both upper and lower
bounds. Since the actuator saturation is not always reached
in practical applications, this paper focuses on the case of
the active constraint, which is defined in the following defi-
nition.

Definition 1 (Active constraint) The actuator saturation
constraint is active if and only if there exists a t ∈ [0, N − 1]
such that sat (U(t), ū) = ū.

The goal of this paper is to develop an ILC algorithm to
generate the feedforward signal uk(t) to reduce the effects

raised by the repetitive reference r(t) and repetitive external
disturbance d(t).

2.2 System representation
This paper considers using the model information for the

ILC designs. The process sensitivity is the mapping from
the feedforward input uk(t) to the output yk(t) without con-
straints in Fig. 1. This mapping can be represented by the
following state-space formulation:{

xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(2)

where the state is denoted by xk(t) ∈ Rn, and the system
parameter matrices are respectively denoted by A, B, and
C. In this paper, the initial state is assumed to be identical,
i.e., xk(0) = x0. The state-space formulation of system (2)
can be transferred into the following lifted form:

yk = Guk + dk, (3)

where

G =


CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
...

...
...

...
CAN−1B CAN−2B CAN−3B · · · CB

 ,

and

dk =
[

(CA)
> (

CA2
)> · · ·

(
CAN

)> ]>xk(0).

The lifted system matrix G is a N -length impulse response
matrix of the process sensitivity. If the relative degree of the
closed-loop system is l = 1, then CB 6= 0 holds for the con-
sidered single-input single-output (SISO) system and hence
G is full-row-rank. For brevity, the discussion on l > 1
can be referred to in [15] and is omitted in this paper. All
the repetitive factors, including the repetitive external distur-
bance d(t) in Fig. 1 and the effect of the identical initial state
dk, can be considered as the part of components with respect
to the repetitive reference. For brevity, the remainder of this
paper will only consider the reference r(t).

When the relative degree l = 1, the input and output vec-
tors are respectively represented as

uk = [uk(0), uk(1), . . . , uk(N − 1)]
>
,

yk = [yk(1), yk(2), . . . , yk(N)]
>
.

The repetitive reference vector is defined as r =

[r(1), r(2), . . . , r(N)]
>, and then the tracking error vector

is defined as
ek = r − yk. (4)

In the presence of active actuator constraints, the ILC
problem should be carefully solved, which will be elaborated
in the next subsection.

2.3 ILC design problem
In the closed-loop design, ILC is open-loop in the time do-

main and typically no restriction is given for its trial-domain
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Fig. 2: Constraint-aware ILC in the closed-loop design.

feedback dynamics. Therefore, the integral windup in the
trial domain could happen in the presence of active actuator
constraints. In this case, the ILC controller tries to increase
the input signals to compensate the error regardless of the
saturation when the desired input is unattainable.

In the closed-loop design Fig. 1, the unlimited feed-
forward input u(t) will also affect the feedback dynamics
in the time domain and result in the time-domain integral
windup. Therefore, the ILC signal should be appropriately
constrained. The illustration of the developed constraint-
aware ILC is given in Fig. 2, where the output of the feed-
forward controller is constrained by a constraint buffer. The
ILC problem discussed in this paper mainly involves design
this constraint buffer, which is concluded in the following
definition.

Definition 2 The ILC problem in this paper is to design an
ILC algorithm to generate the ILC input together with its
corresponding constraint uc in the closed-loop design with
active actuator constraints such that the error can converge
as k →∞.

In the next section, the ILC design is given under the
framework of alternating projections.

3 Constraint-Aware ILC Design

The trial-domain dynamics of the ILC process is investi-
gated in the high-dimensional Hilbert space, which provides
a holistic perspective on the optimization-based design via
alternating projections. The input and output vectors are re-
spectively defined in the Hilbert spaces uk ∈ l2[0, N−1] and
yk ∈ l2[1, N ], whose inner products and associated induced
norms are given as follows:

〈u, v〉R = u>Rv, ‖u‖R =
√
〈u, u〉R, (5)

〈y, e〉Q = y>Qe, ‖y‖Q =
√
〈y, y〉Q, (6)

where R and Q are weighting parameter matrices with ap-
propriate dimensions. The constraint on the ILC controller
is defined as

Ω = {u| − ūc ≤ u(t) ≤ ūc, t ∈ [0, N − 1]} , (7)

where ūc is the saturation constraint value designed for the
ILC controller.

When the constraint on the ILC controller is stationary,
the constrained ILC process can be transferred as alternating
projections between the following two sets:

M1 = {(e, u) ∈ H|e = r −Gu} , (8)
M2 = {(e, u) ∈ H|e = 0, u ∈ Ω} , (9)

where M1 is employed to represent the set of system dynam-
ics and M2 is the tracking goal under constraints. According
to the definition of input and output space in (5) and (6), the
Hilbert space H has the following form:

H = l2 [1, N ]× l2 [0, N − 1] , (10)

where

〈(e, u) , (y, v)〉H = (e− y)
>
Q(e− y)

+ (u− v)
>
R(u− v), (11)

‖(e, u)‖H =
√
〈(e, u) , (e, u)〉H . (12)

Then, applying alternating projection between M1 and
M2, i.e., minimizing the distances between (0, u) ∈M2 and
(e, u) ∈ M1, the constraint-aware ILC can be given as fol-
lows:

uk+1 = PΩ (f (PΩ (uk) , ek)) , (13)

where f(·) is a specific unconstrained ILC update law and
the projection operator PΩ (·) is defined as

PΩ (v) = arg min
u∈Ω
‖u− v‖2R . (14)

When the constraint is active, the constraint-aware ILC
design can avoid useless iterations during the ILC process.
The convergence analysis of the constraint-aware ILC is
equivalent to proving the convergence of alternating projec-
tion between M1 and M2 when they are not intersected. In
this case, the following lemma demonstrates that alternating
projections between two non-intersecting convex closed sets
can converge to the minimum distance, which is denoted by
d(M1,M2).

Lemma 1 M1 and M2 are closed convex sets in a Hilbert
space. A point in the Hilbert space is denoted by z =
(e, u) ∈ H . If M1 ∩ M2 6= ∅, the projection point se-
quence {zk}k≥0, defined by zk+1 = PM1/M2

(zk), converges
in norm, i.e.,

lim
k→∞

‖zk+1 − zk‖ = d(M1,M2). (15)

Proof. Please refer to [22, 23] and the detailed proof is
omitted here. �

When the constraint on the ILC controller is user-decided
in the closed-loop design, the constraint-aware value ūc in
the constraint set Ω should be determined during the con-
strained ILC design. In this case, the following two-variable
optimization problem should be solved, i.e.

min
uk+1,ūc

k+1

Jk+1

(
uk+1, ū

c
k+1

)
s.t. ek+1 = Sr −GPΩk+1

(uk+1),
(16)



Algorithm 1 Constraint-aware ILC
Initialization: Given the system parameter matrices {A,B,C},
a reference trajectory r, an active actuator saturation ū, weighting
parameter matrices Q and R, the intial feedforward ILC input u0 =
0 and the initial constraint set Ω0 where ūc

0 = ū. Set k = 0 and
the maximum trial index kmax.
Repeat:

• Calculate uk+1 by an unconstrained ILC update f (·).

• Set uk+1 = PΩk (uk+1).

• For t ∈ [0, N − 1], set uk+1(t) as the variable ūc
k+1 to get a

unknown vector uk+1[ūc
k+1].

• Minimize the cost function Jk+1 (uk+1[ūc
k+1]) to get ūc

k+1.

• Set uk+1 = PΩk+1 (uk+1).

• Execute trial k + 1 to obtain ek+1.

• Set k → k + 1.

Until: k = kmax.
Return: The feedforward signal ukmax and the constraint-aware
value ūc for each trial.

where J(·) is a user-decided cost function. The con-
straint set is subject to the trial-varying ūc

k+1, i.e., Ωk+1 ={
u| − ūc

k+1 ≤ u(t) ≤ ūc
k+1, t ∈ [0, N − 1]

}
and S is the

impulse response matrix of sensitivity (from r(t) to ek(t)).
Algorithm 3 is given to solve this problem. Given an un-

constrained ILC update law, Algorithm 3 can autonomously
determine the constraint on the ILC controller in the closed-
loop design with actuator saturation constraints.

In the next section, Algorithm 3 is verified on a numerical
example to show its effectiveness.

4 Numerical Simulation

The effectiveness of the constraint-aware ILC is verified in
a numerical simulation by employing NOILC as the uncon-
strained ILC update law. The effectiveness is demonstrated
by the comparisons between applying NOILC in the closed-
loop design without constraint awareness as in Fig. 2(a) and
Algorithm 3 as in Fig. 2(b).

The plant modelH is given as

H(s)=
0.12s + 235

0.00009s4 + 0.01092s3 + 21.385s2
, (17)

with its stabilizing feedback controller C. The sampling time
is 0.001s. The reference trajectory is a third-order profile
with N = 4051.

According to the definition of the Hilbert space H , define
the cost function of NOILC as

Jk+1 (uk+1) = ‖ek+1‖2Q + ‖uk+1 − uk‖2R . (18)

Then, the unconstrained NOILC is given as

uk+1 = uk + Lek, (19)

where L =
(
G>QG + R

)−1
G>Q.

In the simulation, the weighting matrices is chosen as Q =
qI and R = rI where q = 103 and r = 10−3. The initial
constraint-aware value is chosen as the actuator saturation,
i.e., ūc

0 = ū. The simulation conduct NOILC and Algorithm
3 for 30 trials, and hence kmax = 30.
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Fig. 3: Error convergence of the constraint-aware ILC under
different actuator saturation constraints.
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Fig. 4: Cost function of the constraint-aware ILC under dif-
ferent actuator saturation constraints.

The simulation results are given from Fig. 3 to Fig. 5.
The error convergence of both NOILC and Algorithm 3 is
shown in Fig. 3, where different actuator saturation values
ū are tested. In both ū = 0.45 and ū = 0.4, the actuator
constraints are all active. Algorithm 3 performs better than
NOILC in the error convergence. In particular, NOILC is
unstable in the trial domain when ū = 0.4 while Algorithm 3
still converges as k increases. In Fig. 4, the cost convergence
of Algorithm 3 is also better than that of NOILC when ū =
0.4. In the first few trials, the cost has significant decrease
while NOILC relatively reduces slower.

The variation of the constraint-aware value ūc under dif-
ferent actuator saturation constraints is given in Fig. 5. The
constraint-aware value tends to decrease in the first few tri-
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Fig. 5: Variation of the constraint-aware value ūc by Algo-
rithm 3 under different actuator constraints.



als and then converges to the given actuator saturation con-
straints.

5 Conclusion and Future Work

This paper solves an ILC input constraint problem in
the closed-loop design with actuator saturation. The trial-
domain integral windup would happen when without con-
straints on ILC. To solve this problem, a systematical con-
sideration of the ILC input constraint problem in the closed-
loop design is provided. A constraint-aware ILC design is
given to autonomously determine the constraint on the ILC
controller. Alternating projection framework is employed to
give convergence analysis from a holistic perspective. Fi-
nally, compared to NOILC without constraint awareness, the
effectiveness of the developed constraint-aware ILC design,
i.e., Algorithm 3, is verified on a numerical simulation.

For future work, the robustness against model uncertainty
and external trial-varying disturbances should be investi-
gated for practical applications of the constraint-aware ILC.
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